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SRENet: Saliency-Based Lighting Enhancement
Network

Yuming Fang , Senior Member, IEEE, Chen Peng , Chenlei Lv , Member, IEEE, and Weisi Lin , Fellow, IEEE

Abstract—Lighting enhancement is a classical topic in low-level
image processing. Existing studies mainly focus on global illu-
mination optimization while overlooking local semantic objects,
and this limits the performance of exposure compensation. In
this paper, we introduce SRENet, a novel lighting enhancement
network guided by saliency information. It adopts a two-step
strategy of foreground-background separation optimization to
achieve a balance between global and local illumination. In the
first step, we extract salient regions and implement the local
illumination enhancement that ensures the exposure quality of
salient objects. Next, we utilize a fusion module to process global
lighting optimization based on local enhanced results. With the
two-step strategy, the proposed SRENet yield better lighting
enhancement for local illumination while preserving the glob-
ally optimal results. Experimental results demonstrate that our
method obtains more effective enhancement results for various
tasks of exposure correction and lighting quality improvement.
The source code and pre-trained models are available at https://
github.com/PlanktonQAQ/SRENet

Index Terms—Lighting enhancement, saliency extraction, low
light image enhancement.

I. INTRODUCTION

CAPTURING images with high-quality illumination is a
very challenging task due to diverse environmental and

technical constraints, including abnormal contrast, incorrect
settings of photosensitive, darkness of shadow, direct high-
light, etc. Such negative effects produce abnormal exposure
regions which reduce the image quality. Some vision-based
applications such as object tracking and face recognition are
affected by the quality of exposure. Therefore, the low-light
image enhancement (LLIE) is required to improve the quality
of illumination. It can correct exposure while restoring the
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semantic details in images. The LLIE task can be regarded as
a kind of low-level image processing.

Although there have been many solutions for LLIE, some
limitations still exist. Traditional methods attempt to optimize
the quality of illumination based on high dynamic range
imaging (HDR) optimization [1] and histogram equalization
(HE) [2]. However, such methods produce undesirable artifacts
and image distortion with high probability. One improved
solution relies on the retinex theory [3], which decomposes
the low-light image into reflection and illumination. Such
solution concentrates on lighting estimation that is useful for
exposure correction. Unfortunately, it frequently introduces
some unstable color distributions in real images. The reason
is that the retinex-based solution assumes the input image
is noise-free, which cannot be guaranteed in low-quality
images.

Recently, deep learning-based methods [4], [5] have
obtained significant progress in LLIE tasks. Such methods
employ deep neural networks to learn the semantic-based
mapping between low-light and normal regions in images,
which can restore semantic details with high quality illumina-
tion. Benefited from the ability, the mentioned solutions can
establish reliable lighting models and implement the related
optimization tasks. Naturally, these solutions are sensitive
to the relationship between semantic regions. Once there is
a deviation in semantic analysis, their performance in light
optimization is significantly reduced. On the contrary, if the
method attempts to establish global lighting optimization, it
produces negative impacts on the optimization for specific
semantic objects. In addition, some methods [6] attempt to
incorporate semantic priors into the low-light enhancement
process. However, while SKF introduces semantic information
in a more structured way, it still focuses on general semantic
guidance rather than performing explicit, targeted optimization
for specific object instances. In summary, it is a challenging
issue for existing solutions to balance global and local illumi-
nation.

In this paper, we propose a novel LLIE method SRENet
based on a separation optimization process with two steps.
Firstly, we detect salient regions from images to implement
saliency-based lighting enhancement. It ensures that the local
illumination of the saliency objects can be accurately opti-
mized. Compared to some semantics-based LLIE solutions,
using salient regions as the foreground reduces the sen-
sitivity to certain semantic objects, and this improves the
generalization in practice. Next, we utilize a fusion module
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Fig. 1. The pipeline of SRENet. It contains saliency extraction module, local enhancement module, and fusion module.

Fig. 2. Visualization of detected salient regions by the proposed module.

to process global lighting optimization based on optimized
semantic regions. It keeps the semantic consistency between
foreground and background, and balance between global and
local illumination. The contributions of the proposed method
can be summarized as follows.

• We provide a saliency extraction module to detect fore-
ground semantic objects in images. It first extracts
fragments with preliminary semantic relevance and then
combines them to obtain salient regions with well-defined
boundaries, significantly enhancing the quality of the
salient regions.

• We develop a local enhancement module with an encoder-
decoder network to optimize the illumination for salient
regions and background separately. The foreground
objects in salient regions can be significantly highlighted.
The network shares weight parameters for the two parts
and considers the color changing during the optimization,
which provides more flexibility and stability.

• We design a fusion module to integrate optimized detec-
tion of salient regions and background. It keeps semantic
consistency of exposures and color distributions while
preserving fine-grained image details. The fusion module
achieves balance between global and local illumination
and successfully controls the distortions.

The pipeline of our method is shown in Fig. 2. The rest
of the paper is organized as follows. In Sec. II, we discuss

the related works about LLIE. In Sec. III, we introduce
the implementation details of the saliency extraction module,
local enhancement module, and fusion module. We show the
performance of proposed method in Sec. IV and Sec. V
provides the conclusion.

II. RELATED WORK

According to related implementation details, LLIE methods
can be divided into three categories: statistical-based, retinex-
based, and data-driven LLIE methods.

Statistical-based LLIE methods utilize statistical analysis to
guide lighting optimization. Representative solutions include
HDR optimization and histogram equalization (HE). An image
with HDR regions may experience tone reproduction issues
with a high probability [1]. Some semantic details are lost due
to the influence of highlights or shadows. HDR optimization
solutions [7], [8], [9] attempt to solve the problem by low
dynamic range (LDR) mapping, which ensures more details
to be displayed. However, such solutions inevitably lead to a
contrast loss. The HE-based methods [2], [10], [11] improve
image contrast by modifying the dynamic range of the image.
However, such methods suffer from the under-enhancement
or over-enhancement without global illumination control. The
mentioned works raise a crucial issue: how to establish balance
between local and global illumination.

Retinex-based LLIE methods implement lighting optimiza-
tion according to the retinex theory [3] that reveals the
principles of the human visual perception for image illu-
mination. To decompose the image into reflectance and
illumination, the retinex-based solutions reconstruct the bal-
ance between local and global illumination. According to the
retinex theory, some works [12], [13] implement dynamic
range optimization to achieve good illumination for images.
Following the development of deep learning, the improved
solutions [14], [15], [16], [17], [18], [19] combine retinex-
based analysis and deep neural works to obtain more adaptable
light optimization models. Compared to the statistical-based
methods, retinex-based methods improve the ability to balance
global and local illumination. However, the performance of
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such methods are affected by absence of explicit semantic
specification, which leads to the loss of image details in local
regions.

Data-driven LLIE methods directly construct lighting opti-
mization models from prior images. Such methods can be
divided into two technical routes: supervised and unsupervised
schemes. The supervised LLIE methods [5], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30] learn the distri-
butions of illumination based on clearly annotated images.
The training images share identical semantic information with
varying lighting conditions, which provide clear optimiza-
tion target. Obviously, such approaches are limited by the
training dataset. The unsupervised LLIE methods [4], [6],
[31], [32], [33] enhance low-lighting images without explicit
paired samples. Some objective rules are employed to establish
loss functions, including color curve [4], visual quality [32],
semantic-aware knowledge [6], etc. The advantage of such
methods is the ability to train models on larger-scale datasets.
However, the performance of such methods is limited by
the accuracy of trained model and semantic sensitivity in
practice. Additionally, other methods such as diffusion-based
approaches [34], [35] have been proposed, which leverage
diffusion models to enhance low-light images through a gen-
erative process.

Overall, it is important to establish a balance between global
and local illumination while considering certain semantic
details in LLIE task. Such requirements take challenge in terms
of performance, robustness, and generalization. Using salient
region to guide lighting is a promising solution [36]. The
reason is that the salient region has relationship with semantic
information but not correspond to specific semantic objects,
which reduces the semantic sensitivity. The main drawback of
the solution is that if salient region optimization is performed
independently, the lighting adjustment for other regions are
limited which breaks the balance between global and local
illumination. We provide a practical solution to address the
issue.

III. PROPOSED METHOD

The SRENet contains three main components, including
saliency extraction module, local enhancement module, and
fusion module. The saliency extraction module detects the
accurate salient regions and separates an image into foreground
and background. The local enhancement module optimizes the
illumination of the two parts by an encoder-decoder network.
Finally, the optimized parts are merged to obtain the final
results by fusion module. The pipeline is shown in Fig. 1.
In following parts, the implementation details are introduced.

A. Saliency Extraction Module

To implement accurate LLIE tasks, we extract salient
regions that represent the optimization target for local illu-
mination. The premise is that human subjective attention
primarily focuses on salient regions in images. Enhancing
these regions independently as the foreground improves human
subjective perception. Additionally, salient regions do not
require precise semantic annotation, which reduces semantic

sensitivity in practice. We design the saliency extraction mod-
ule to separate the image into two parts: salient regions as
the foreground and other regions as the background. First, we
implement the saliency detection by

S = U2Net(Iin), (1)

where Iin is the input image, and S represents the mask
of the salient region captured by U2Net [37]. However, the
detected salient region cannot fully satisfy the requirements
of the LLIE task due to the limited generalization capability,
which often produces fragmented semantic objects with a high
probability in low-light scenes. To address this problem, we
employ the fast segment anything model (FSAM [38]) to
assist in saliency detection. Trained on a large-scale dataset
such as SA-1B, SAM is capable of performing segmentation
tasks on arbitrary images without the need for task-specific
fine-tuning. It supports zero-shot segmentation, maintaining
strong performance even on previously unseen objects or
scenes. Building on SAM, the FastSAM model is trained using
only 2% of the SA-1B dataset released with SAM. While
achieving comparable segmentation performance, FastSAM
offers a 50-fold improvement in inference speed. FSAM can
detect semantic parts of images with more accurate boundaries,
represented as

{Oi}
m
i=1 = FS AM(Iin), (2)

where Oi represents a semantic part with index i, and the input
image is divided into m semantic parts by FSAM. To refine
the saliency detection, we compute the IoU scores (pixel-based
area overlap ratio) between {Oi} and S to improve the boundary
accuracy of the identified salient regions. This process can be
formulated as

S ′ = S ∪ {Oi}si>0.2 − {O j}s j<0.05, (3)

where si represents the IoU score between Oi and S, and s j

represents the IoU score between O j and S. According to
this computation, the original salient region S is updated to
the new region S ′ with semantically consistent boundaries.
Some blurry pixels distributed along the boundaries can be
effectively restored by subtracting the weakly overlapping
regions {O j}. Although we utilize semantic segmentation to
improve the accuracy of boundaries, the proposed module does
not rely on specific semantic annotations. By incorporating
salient regions, semantic sensitivity can be controlled within
an acceptable range. In Fig. 2, we show some saliency results
produced by the proposed module.

B. Local Enhancement Module

Based on achieved salient regions and related background,
we propose a local enhancement module featuring a two-
branch architecture to optimize foreground and background
separately. This design enhances the contrast of salient regions,
aligning with human subjective perception. Inspired by the
backbone structure described in [24], we introduce an encoder-
decoder architecture with a color embedding module. To
prevent semantic fragmentation from independent enhance-
ment, the two branches share the same weights during training.
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Fig. 3. Architecture of local illumination enhancement module.

Fig. 4. Visualization of color embedding. Without color embedding, the
white semantic objects take significant color shift. W/o CE: without color
embedding; CE: with color embedding; GT: ground truth.

To enrich input features, we employ three convolutional
blocks to preprocess the original image before encoding. Each
block contains a Conv-Norm unit with a GELU (Gaussian
Error Linear Unit) activation function. The encoding module
consists of 12 convolutional layers aiming to reduce the spatial
dimension of the feature map. At the same time, it increases
the number of feature channels and facilities the aggregation
of contextual features across multiple scales without sacri-
ficing resolution. The first layer of this module comprises
a convolutional block, while the second and third layers
consist of two convolutional blocks with residual connections.
The fourth layer performs down-sampling using convolutional
blocks. Layers five to eight and nine to twelve share similar
structures to the preceding four layers. The structure of the
decoding module corresponds to the structure of the encoding
module. During the encoding and decoding processes, down-
sampling and up-sampling are achieved using convolutional
blocks with a stride of 2. Following the decoding module,
three convolutional blocks are included to connect features.
Finally, convolutional blocks with a tanh activation function
are employed to normalize the number of channels and control
data overflow. In Fig. 3, we illustrate the architecture of local
illumination enhancement.

The color consistency should be taken into consideration in
lighting enhancement [24]. Due to the separate optimization
used in our framework, the need for color consistency control
becomes especially necessary. We employ a color embedding

Fig. 5. An instance of fusion for boundary integration.

module to fit the requirement. It combines the original input
with encoded features to compute the affinity matrix used for
color distribution matching. Throughout the training process,
it continuously learns the distribution of colors, ultimately
achieving optimized color consistency. To capture the rela-
tionship between the input image and its encoded features, we
first define two intermediate variables:

M = −‖F − Iin‖1, P = F · Iin, (4)

where F denotes the feature map extracted from the encoder,
Iin is the input image adjusted via convolution blocks to match
the channel dimensions of F, M represents the Manhattan
distance (L1 norm) between F and Iin, P represents the
element-wise product (inner product) of F and Iin, indicating
feature alignment or consistency. These two variables are then
combined to compute the affinity matrix A, which characterizes
both semantic and color correlations across different regions
of the image:

A = 2 × sigmoid(M) � tanh(P), (5)

where sigmoid(M) maps the similarity scores into the range
[0.0, 0.5], and multiplying by 2 constrains the final values
within [0.0, 1.0], preventing data overflow, tanh(P) maps the
product values to the range [−1, 1], preserving both positive
and negative correlation information, � denotes element-wise
multiplication, effectively merging the similarity and consis-
tency measurements. The resulting affinity matrix A is then
passed to the decoding module to guide color embedding.
As shown in Fig. 4 in paper, the color embedding module
enhances the color consistency between the output image and
the ground truth, producing more visually coherent results.

C. Fusion Module

To obtain the final enhanced image with the balance
between local and global illumination, the two parts of the
image should be merged with global consistency which takes
a significant challenge. Introducing strong global consistency
constraint produces degradation of local contrast. On the
contrary, weak global consistency leads to significant semantic
fragmentation with non-natural boundaries. To address the
issue, we propose a fusion module to concentrate salient
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Fig. 6. Comparison of enhanced results by different methods. According to the labeled foreground and background regions, our method achieves better
balance between exposure correction and contrast preservation.

Fig. 7. Comparison of enhanced results by different methods proposed in recent years. Our method avoids color distortion in enhanced images and keeps
exposure balance in complex environments.

regions and background with global consistency. It is designed
based on the U-Net structure, which can be represented as

IC = FNet(S ′e + Be), (6)

where S ′e and Be denote the enhanced salient regions and
background, the output Ic is computed by the concentration
between S ′e and Be with global consistency control. In Fig. 5,
we show an instance of fusion process for boundary inte-
gration. With the iterative optimization, boundaries between
foreground and background are eliminated to fit global con-
sistency.

Loss function. The SRENet should consider the image
detail preservation and boundary concentration during the
fusion process. The primary purpose of the loss function is to
establish global consistency constraint on the local enhanced
results. It can be represented as

Lg = λ1LP(IE) + λ2L1(IE) + λ3LB(IC), (7)

where IE is the middle result that is enhanced by local
enhancement module, the perceptual loss LP is employed to
evaluate the similarity between the generated image and the
reference one. It emphasizes the semantic level of similar-
ity rather than pixels. The L1 loss evaluates the absolute
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difference according to predicted and target values of images.
It is sensitive to singular values generated by noisy pixels
and discrete distributions. The boundary loss LB controls
boundaries between salient regions and background in fusion
process. During the training of SRENet, LB estimates the
difference in boundaries and guide the fusion module by
gradient propagation. Firstly, it smooths the input image
by Gaussian convolution kernel. Then, the boundaries are
extracted by Laplace operator. Finally, the Charbonnier loss
is employed to evaluate the loss for similarity measurement
in boundaries. With the hyperparameters (λ1, λ2, λ3), the loss
terms are combined to abtain the loss funtion Lg to balance
local illumination enhancement and global consistency.

Training. The SRENet uses Adam optimizer to implement
training. The related parameters are set to β1 = 0.99 and β2 =

0.999. The learning rate is set to 10−5. To preserve the integrity
of the images, we do not perform cropping for feature analysis.
All training images are normalized to 400 × 320. The batch
size is set to 2 for each iteration, and the epoch number is set
to 320. We evaluate the performance with different tasks in
the following part.

IV. EXPERIMENTS

A. Datasets and Metrics

We evaluate the performance of SRENet in MIT-Adobe
FiveK [39] and LOL dataset [17], which contain rich saliency
information and various low-light scenes. Based on the MIT-
Adobe FiveK, we select images edited by the expert C to
be the reference data. Related original images are used to be
the source samples. For exposure learning, we collect images
with normal exposure from LOL dataset to be the reference
ones. Some images with abnormal exposure are selected to
be the source ones. In addition, we generate a synthetic
image dataset to improve the ability for accurate light source
perception. Based on the software “set-a-light-3D”, we set
precise photography parameters to render images with different
light source intensities. Overall, the entire test dataset includes
3301 pairs of images, including source and reference ones that
are regarded as the input samples and related ground truth. It
includes training set (2547 pairs), validation set (643 pairs),
and test set (111 pairs).

To provide quantitative analysis for different methods, we
employ a set of image quality assessment (IQA) metrics,
including full reference IQA and no-reference IQA. The full
reference IQA methods require the reference image to be
the baseline for quality evaluation. We employ the classical
measurements PSNR and SSIM [41] to evaluate the perfor-
mance of LLIE methods. For no-reference IQA, we select
three mainstream metrics ILNIQE [42], DBCNN [43], and
MUSIQ [44] to conduct the quantitative analysis. It should be
noticed that each metric can only evaluate image quality from
a specific perspective. In addition, we also establish a user
study (45 participants, with 25 randomly selected images for
each one to choose the best and worst images) as the subjective
evaluation reference.

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE TEST SET. THE

TOP TWO RESULTS ARE MARKED IN BOLD. U-BEST AND U-WORST
ARE PERCENTAGE RESULTS OF THE USER STUDY

B. Comparisons

To provide a comprehensive evaluation of LLIE perfor-
mance, we introduce a series of classical methods as the
reference, including RetinexNet [17], KinD [18], Zero-DCE
[4], MIRNet [20], HWMNet [40], IAT [25], LLFormer [5],
Retinexformer [19], SCI [32], LLFIOW-SKF [6], and DCCNet
[24]. The selected comparative approaches encompass most of
the mainstream LLIE solutions in the past three years. Fig. 6
presents an instance enhanced by different methods. In general,
traditional methods focus on global illumination optimization
which results in a significant loss of contrast in the processed
images. In contrast, the methods proposed in the past two years
can achieve more natural results with the balance between
contrast preserving and exposure optimization.

Building on the progress, our method achieves enhanced
illumination for regions with significant exposure differences,
benefiting from a separate optimization strategy. In Fig. 7, we
compare the results of our method with several recent solu-
tions. It exhibits a clear advantage of our method in achieving
a balanced exposure between the foreground and background
with complex lighting conditions. In Fig. 8, some images
with more complex exposures and related RGB histograms
are displayed. Our method achieves a better balance between
exposure control and contrast preservation. Benefited from
the separation optimization, our method is able to achieve
better exposure results with adaptable color distributions. More
results are shown in Fig. 9. The results labeled with “Our-
Global” means that the entire images are regarded as the
salient regions and processed by SRENet. Such conditions
correspond to the case where the saliency detection fails.

To comprehensively demonstrate our method to restore
overexposed images, we also selected the two SOTA methods
for a detailed comparison. As shown in Fig. 11, DCCNet
tends to increase image brightness while neglecting color
information, and LLFormer similarly results in a warmer tone.
In contrast, our method better preserves the color information
and overall contrast of the images. To provide compelling
quantitative analysis, we reports results of IQA metrics and
related user study report in Table I and Fig. 10. The IQA met-
rics show that our method achieves more stable quality based
on various measurements. For the user study, we designed
a simple and intuitive web-based interface that displays the
enhancement results from different LLIE methods side by side.
Participants were asked to select the image they considered
the “best” and the one they considered the “worst” among
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Fig. 8. Comparison of enhanced results by different methods proposed in recent years. Our method can handle images with underexposure and overexposure.
According to the histograms, our method achieves uniform distributions of RGB channels while maintaining the contrast with high quality.

all displayed results for each scene. To ensure diversity and
reduce bias, we randomly shuffled the display order of the
methods across scenes and collected responses from more than
100 participants with varied backgrounds. Through statistical
analysis of the collected selections, we aim to determine
which LLIE method is most preferred by human observers.
The results indicate that our approach was selected as “best”
with the highest proportion and as “worst” with the lowest
proportion. Related results are shown in Fig. 10.

Due to the benefits of the color embedding module, our
method can better maintain the color consistency of the
images. As shown in Fig. 12, we selected the two methods
with the best perception based on the user study as the Refer-
ences. We calculate the color differences between the ground
truth and enhanced results, and generate related heatmaps.
In Fig. 12, such heatmaps show that our method is more

consistent with the natural color distribution according to the
ground truth. Furthermore, our method also has better color
consistency for the salient objects.

C. Applications

Low-light Object Detection. The LLIE not only meets
human subjective visual perception and provides better visu-
alization effects, but also plays an important role in some
practical vision applications. In this part, we report some
quantitative results for object detection tasks in low-light
environments. The test dataset is collected from ExDark
dataset [45], which includes 5890 training images, 737 val-
idation images, and 736 test images. The YOLO-V5 [46]
is used as the test classifier. We use different LLIE meth-
ods to preprocess low-light images and compare the object
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Fig. 9. Comparison of enhanced results by different methods on MIT-Adobe FiveK images.

detection performance. The quantitative results are shown in
Table II. Compared to other LLIE methods, SRENet achieve

performance improvement across more categories. To visually
demonstrate the effect of LLIE methods on object detection

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 12,2025 at 07:05:00 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: SRENet: SALIENCY-BASED LIGHTING ENHANCEMENT NETWORK 4549

Fig. 10. Quantitative analysis of the user study. Our method achieves the most selections of “best” and the fewest “worst” selections.

TABLE II
COMPARISON OF THE PRE-PROCESSING EFFECTS BY DIFFERENT LLIE METHODS ON HIGH-LEVEL VISION UNDERSTANDING. THE TOP TWO RESULTS

ARE MARKED IN BOLD

Fig. 11. Comparison of enhanced results by different methods on overexposed
images. Our method achieves more natural illumination.

tasks, we provide some examples in Fig. 13. Our method
improves the accuracy for semantic detection. Some semantic
objects influenced by low-exposure conditions can be revealed.

Color Transfer. The quality of image color distribution has
close relationship with the lighting condition. Naturally, LLIE
method can improve the performance in color-based enhance-
ment applications such as color transfer and colorization. For
the color transfer, the low-quality exposed areas affect color
correspondences and degrade the transfer performance. With
the improvement of LLIE, such limitation can be controlled.

Fig. 12. Comparison of enhanced results by different methods with heatmaps.
Our method achieves images closer to the ground truth.

Fig. 13. Comparison of object detection without and with our method in
low-light images.

In Fig. 14, we compare some color transfer results for LOL
images without and with SRENet improvement. Regardless
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Fig. 14. Color transfer results without and with LLIE methods. The basic
color transfer method is selected to WCT2 [47].

Fig. 15. The LLIE results by SRENet with different salient regions.

Fig. 16. The LLIE results by SRENet with global enhancement and local
enhancement.

of whether the low-light areas appear in source images or
reference ones, our method significantly improve the quality
of color distribution. The contrast and tone in images are
enhanced.

D. Ablation Study

To illustrate the functionality of different modules in
SRENet, we conduct the ablation study to reveal their indi-
vidual contributions. The saliency extraction module improves
the accuracy of salient regions in the image with semantic
consistency. The traditional saliency detection method break
the semantic consistency with high probability. In Fig. 15,
we compare the enhanced results by SRENet with tradi-
tional saliency detection and saliency extraction module. The
instances show that the saliency extraction module extracts
more accurate foreground information and output lighting
optimization with better semantic consistency. In contrast,
the traditional saliency detection methods produce unnatural
breaks of color distribution.

Fig. 17. The LLIE results by SRENet without and with fusion processing.

Fig. 18. Negative examples by SRENet.

The local enhancement module is established according to
the separation optimization strategy. A fundamental doubt is
whether the strategy can achieve better results than solutions
with global optimization. To validate the effectiveness of our
strategy, we compare the SRENet with global enhancement
(the entire image is regarded as the foreground) and local
enhancement for LLIE tasks. In Fig. 16, some enhanced
results are shown. Although the same structure is used by the
global enhancement and local one, the latter is still able to
achieve better results that are benefited from the enhancement
module. More results have been shown in Fig. 9. Due to the
selection of separate optimization, the importance of fusion
module is self-evident. The key issue is that the boundary
can be well processed by fusion processing. In Fig. 17, we
compare enhanced images by SRENet without and with fusion
processing. It can be seen that the fusion module effectively
avoids artifact edges even for regions with complex boundary
information.

Limitations. It should be acknowledged that our method
relies on accuracy of salient regions. The performance of
our method will degrade to global optimization (Fig. 16)
when the image does not have obvious saliency objects as
foreground, which can be regarded as a limitation. There is
a special phenomenon where ghosting occurs at the edges
of salient regions when the foreground appears in a backlit
environment with extreme contrast difference. The reason is
that in the backlit environment, boundaries of salient regions
have abnormal high dynamic ranges in the illumination dis-
tribution, which makes it difficult for the fusion network to
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achieve seamless blending results. In Figure 18, we show
some negative examples. The color consistency is disrupted
with color bleeding and ghosting effects when the boundaries
of salient regions are significantly affected by back-lighting.
Although there have some unsatisfactory areas in enhanced
images, the optimization effect of SRENet on the foreground
remains highly noticeable.

V. CONCLUSION

In this paper, we have proposed an LLIE method SRENet
that utilizes a separation optimization strategy to balance
local and global illuminations in images. It divides an image
into foreground and background according to the salient
regions. Based on the two parts, the SRENet implements local
illumination enhancement to optimize the image separately.
Benefited from the fusion module, the two enhanced parts
can be concentrated with global consistency. The proposed
solution successfully improves the contrast of salient regions
while enhancing the quality of lighting and color distribution;
for exposure correction, the SRENet overcomes the damage
caused by the global exposure scheme to local semantic
details. The resultant improvement is meaningful for many
computer vision tasks.
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