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PKSS-Align: Robust Point Cloud Registration on
Pre-Kendall Shape Space

Chenlei Lv

Abstract—Point cloud registration is a classical topic in the
field of 3D Vision and Computer Graphics. Generally, the im-
plementation of registration is typically sensitive to similarity
transformations (translation, scaling, and rotation), noisy points,
and incomplete geometric structures. Especially, the non-uniform
scales and defective parts of point clouds increase probability of
struck local optima in registration task. In this paper, we propose
a robust point cloud registration PKSS-Align that can handle var-
ious influences, including similarity transformations, non-uniform
densities, random noisy points, and defective parts. The proposed
method measures shape feature-based similarity between point
clouds on the Pre-Kendall shape space (PKSS), which is a shape
measurement-based scheme and doesn’t require point-to-point or
point-to-plane metric. The employed measurement can be regarded
as the manifold metric that is robust to various representations
in the euclidean coordinate system. Benefited from the measure-
ment, the transformation matrix can be directly generated for
point clouds with mentioned influences at the same time. The
proposed method does not require data training and complex
feature encoding. Based on a simple parallel acceleration, it can
achieve significant improvement for efficiency and feasibility in
practice. Experiments demonstrate that our method outperforms
the relevant state-of-the-art methods.

Index Terms—Kendall shape space, point cloud registration.

I. INTRODUCTION

S AN important topic in 3D vision, point cloud registra-

tion has been studied for many years. The target of the
registration is to align point clouds with accurate point-based
correspondence and semantic consistency. It is useful for many
applications such as simultaneous localization and mapping
(SLAM), autopilot system, 3D reconstruction, etc. To implement
the registration, some challenges should be considered, includ-
ing influences of similarity transformations, non-uniform densi-
ties, random noisy points, and incomplete geometric structures.
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Fig. 1. Instances of point cloud registration based on Pre-Kendall shape space
(PKSS). The source point clouds with different similarity transformations, non-
uniform densities, noisy points, and defective parts are mapped onto the PKSS.
Based on the shape measurement on PKSS, such point clouds are aligned to the
template ones.

Such influences are produced by complex external conditions
during the point cloud scanning. Some instances are shown in
Fig. 1.

To handle the challenges, there are several main technical
routes, including distance-based registration, geometric feature-
based alignment, and deep encoding-based correspondence. The
distance-based registration is to match point clouds based on
point-to-point [1] or point-to-plane [2] distance. Following the
descriptions of Wahba problem [3], once the correspondence
between two vectors is established, an optimal transformation
can be obtained by singular value decomposition, which can be
regarded as the transformation matrix for registration. It is con-
venient to be implemented and does not require complex feature
analysis. However, the registration depends on initial poses of
point clouds that are typically unordered. It significantly reduces
the function of singular value decomposition for vector align-
ment. The drawback increases the probability of local optima oc-
curring, especially for the point clouds with non-uniform scales
and defective parts. The geometric feature-based alignment [4]
can be used to improve the accuracy. The transformation matrix
is estimated directly and independent of the initial pose. It also
can be concluded as the correspondence-based registration that
is consistent to the basic framework of Horn’s method [5].
Intuitively, the performance of the alignment is sensitive to the
quality of selected geometric feature. In addition, the feature
extraction reduces the efficiency in practice. Following the de-
velopment of deep learning, some researchers propose related
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The pipeline of PKSS-Align. First, the pre-processing is used to normalize point clouds and remove outliers; second, the shape measurement estimates

the pose similarity between point clouds in current state; finally, the global searching is to find the best transfer matrix based on the shape measurements from the

candidate transfer set in parallel.

frameworks [6] [7] to implement point cloud registration. Such
frameworks encode point clouds into learnable deep-features for
efficient calculation. However, the frameworks are sensitive to
the training dataset with various similarity transformations that
increase the probability of the local optimum.

Considering the disadvantages of the mentioned technical
routes, a robust registration solution should satisfy the char-
acteristics: accurate and robust measurement for registration
status, independent to the feature-based or strict point-based
correspondence (for pose alignment, it does not rely on precise
geometric features or points, and robust to low-quality data
such as noise and random distributions.), and global search-
ing to avoid the local optimum. In our previous work [8],
we have proven that the Kendall shape space theory [9] can
support an effective solution for registration that is a shape
measurement-based scheme. However, the solution leaves two
limitations: lower computational efficiency and restricted regis-
tration for point clouds with different scales and defective parts.
For shape measurement, the employed Hausdorff metric cannot
be considered a manifold metric, which reduce the robustness
in registration task.

In this paper, we propose a new method PKSS-Align that
is an enhanced version of KSS-ICP [8]. It is implemented on
Pre-Kendall shape space (PKSS) with main components: PKSS-
based mapping, PKSS-based shape measurement, and global
searching scheme in SO(3). First, the PKSS-based mapping is
implemented to reduce influences of different translations and
scales. Next, the PKSS-based shape measurement is proposed
to provide a manifold metric for alignment. The measurement
inherits the advantages of robustness to similarity transforma-
tions while addressing the limitations of KSS-ICP. Finally, the
global searching scheme in SO(3) with parallel acceleration
is employed to generate registration result. It can efficiently
handle the different scales and defective parts at the same
time. Compared to the previous version, the new method has
significantly improved in terms of robustness and computational
efficiency. The pipeline is shown in Fig. 2 and the contributions
are summarized as:

® We provide a PKSS-based mapping to represent point

cloud on PKSS. The influences of scaling and translation
are initially reduced that is helpful for following alignment.

e We present a PKSS-based shape measurement to describe
the align status between point clouds. The measurement
does not depend on point-based metric and complex ge-
ometric features. It provides more accurate and robust
quantitative analysis for various poses of point clouds.
Specifically, it overcomes the limitations of Hausdorff
metric in previous version.

e We design a global searching scheme in SO(3) with
parallel acceleration. The scheme searches larger solution
space to avoid potential local optimum for registration. In
addition, it provides a practical solution for point clouds
with defective parts and different scales at the same time.

The rest of the paper is organized as follows. In Section II, we

review existing classical methods for point cloud registration. In
Section III, we introduce the details of PKSS-based mapping,
followed by the implementations of PKSS-based shape mea-
surement and global searching scheme in Sections IV and V.
We demonstrate the effectiveness and efficiency of our method
with extensive experimental evidence in Sections VI and VII
concludes the paper.

II. RELATED WORKS

The registration task concludes a large number of solutions.
One classification divides the solutions into two categories:
correspondence-based and correspondence-free. Based on our
study, we have found that many solutions incorporate a combi-
nation of methods to implement registration. Therefore, we em-
ploy a new classification to facilitate comprehension, including
distance metric-based, feature-based, and deep encoding-based
registrations.

Distance metric-based registration methods achieve reg-
istration results by point-to-point or point-to-plane distance
optimization. The Iterative Closest Point (ICP) [1] and its
variants [8], [10], [11], [12], [13], [14], [15] belong to this
category. More related works are discussed in reviews [16] [17].
In Section I, we have introduced that such methods construct
local searching strategy that depends on the initial poses of
point clouds. The drawback is that the registration traps into
the local optimum with high probability. To avoid the local
optimum, some methods utilize the Branch-and-Bound (BnB)
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scheme [18] to implement global searching in SO(3), includ-
ing L2 error optimization [19], stereographic projection [20],
consensus set maximization [21], camera pose alignment [22],
and globally optimal solution(Go-ICP) [23]. However, most
of them are sensitive to point clouds with non-uniform scales
and defective parts. Even the BnB scheme provides the global
searching implementation, the accuracy of the registration also
can not be guaranteed for complex similarity transformations.

Feature-based registration methods build the correspondence
of point clouds based on geometric features or shape descriptors.
Such methods estimate the transformation matrix by feature
alignment directly. In theory, the feature alignment keeps better
geometric consistency during the registration process. Accord-
ing to the related features, some classical methods establish
their implementations, including Normal Distributions Trans-
form (NDT) [24], [25], Shape Context [26], [27], Sub-maps [28],
Rotational Projection Statistics features [29], Covariance Matri-
ces [30], Point Feature Histograms (PFH) [4], [31], [32], Second
Order Spatial Compatibility Measure (SC? -PCR) [33], Maximal
Cliques [34], Inlier Confidence Calibration [35], and Progressive
Distance Extension [36]. Generally, the main drawback of such
methods is that the performance of registration is sensitive to
the quality of the selected feature. Noisy points and defective
parts in point clouds reduce the accuracy and robustness of the
feature inevitably. For point clouds with large volumes, the huge
calculation of feature extraction also affects the practicality of
the methods.

Deep encoding-based registration is becoming more popular
recently. Comparing to the traditional feature-based registra-
tion, the deep encoding-based methods encode the learnable
deep-features [37] [38] to represent the point cloud. Bene-
fited from the large dataset-based training and efficient com-
puting, such methods achieve the balance between efficiency
and robustness for registration. The methods include Point-
NetLK [6], Deep ICP [39], Deep Closest Point [40], PRNet [41],
IDAM [42], RPM-Net [43], 3DRegNet [44], DGR [45], PCR-
Net [7], Recurrent Closest Point [46], GeoTransformer [47],
RoReg [48], ROTBS [49], RGM [50], REGTR [51], UD-
PReg [52], RolTr [53], and Wednesday [54]. Although the
methods take significant computational improvement, some de-
fects are still exist in practice. Such frameworks learn the deep
features from the training dataset and encode the point clouds
for registration. The performance is limited by the categories
and distribution of the dataset. In other word, the learnable
deep-features are semantically sensitive. Without reasonable
pre-processing, the framework can not reduce the influence of
different scales and non-uniform density of point clouds.

The fundamental problem with existing methods is that their
inability to establish local feature-free measurement on unorga-
nized point clouds with global correspondence. It becomes more
challenging when there are scale differences and data incom-
pleteness. KSS-ICP [8] provides a feasible solution with global
shape alignment property. Unfortunately, the related limitations
restricts its performance in practice. The proposed PKSS-Align
completely improves the shortcomings of KSS-ICP by employ-
ing new measurement and global pose searching strategy. It
enables simultaneous improvement in computational speed and
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accuracy. In following parts, we will introduce implementation
details.

III. PKSS-BASED MAPPING

Kendall shape space [9] has been widely used in shape anal-
ysis. Various 3D objects can be represented by regular discrete
forms and measured on the Kendall shape space. According
to the Kendall theory [9], the PKSS is a quotient space that
removes influences of partial similarity transformations (scaling
and translation). The pre-processing is used to map point clouds
onto PKSS. The projection of a point cloud on PKSS can be
regarded as a “Pre-shape” regular form [55]. Although the re-
flection is still affected by the rotation, it reduces the complexity
for shape alignment that is useful for registration. Based on the
property, the mapping operation is to find the regular form for
point clouds by normalizing different scales and translations.
Let P represents an input point cloud, P = {z1,...,2,}, x; is
a 3D point belongs to P. K e represents the PKSS that can be
formulated as

Kpre = Rmxg\Gsta (1)

where G, represent a transformation group includes scaling
and translation. A point cloud-based reflection on K has
m points and each one has three dimensions. In addition, the
K ;re has removed the influences of scaling and translation with
quotient group operation. Following the formulation, we provide
the implementation for the mapping:

Koe(P)={z1—7,...,2y —T}/s(P),

1/2
L - _
x:Eij,s(P): Slzj—z| . @
j=1 j=1

In theory, a point cloud can be mapped onto the K ;¢ by (2).
However, there have four influencing factors that cannot be ig-
nored, including different point numbers, non-uniform density,
random outliers, and non-uniform scaling produced by defective
parts. In general, the raw point clouds have different point
numbers. For PKSS-based mapping, the numbers should be
unified to m. The non-uniform density takes some unpredictable
disturbances that reduces the accurate of 7. It means that the
point clouds scanned from same object with different densities
are not treated as the same model. To solve the problems, a point
cloud resampling method [56] is used to uniform point numbers
and densities. It can be regarded as an improved farthest point
sampling with parallel acceleration. Based on the resampling,
the first two influencing factors are removed. Even the point
numbers are not strictly equal by resampling, our method also
can achieve the reliable measurement. The details are discussed
in Section IV.

The random outliers break the geometric structure of the
point cloud. The more traditional solution for outlier culling
is to compute the k-nearest neighbor (KNN). The KNN-based
distance of the outlier significantly larger than ordinary points.
With a specified threshold based on the distance, the outliers
can be detected. However, the solution is not an adaptive method
that affected by the threshold and outliers’ density. We present an
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adaptive outlier culling method without specified threshold. The
basic assumption of the method is that the ordinary points should
have duality for neighbors. The outlier culling is formulated as

{zo} = {milzi & N(x5), z; € N(2:)}, 3)

where {z,} is the outlier set, IV represents the neighbor region.
We detect the outlier set and remove it to implement the outlier
culling.

The non-uniform scaling produced by defective parts is dif-
ficult to be removed directly. Traditional scale normalization
methods like PCA-based estimation [57] may fail on point
clouds with defective parts. It cannot be solved by (2). We
provide the shape measurement-based solution that is discussed
in the following section.

IV. PKSS-BASED SHAPE MEASUREMENT

It has been discussed that the accurate measurement is im-
portant for registration. Benefited from the Kendall theory, the
shape measurement can be computed on PKSS without complex
feature learning. It reflects the shape similarity between the
source point cloud and the template one. The formulation of
the measurement is represented as:

Gk (Kpre(Py), OK pre(Py)) = arccostr(RA), (4)
K pro(Po) K pre(Py)T = UAV, R € SO(3), 6))

where Gk is the measurement, K pre(P,) and K pre(Fp) are
point clouds that mapped onto the PKSS, O represents a rotation
that implemented into the P,. A is the real diagonal matrix com-
puted by singular value decomposition. It includes the eigen-
values of K pre(Ps)K pre(P5)T. The measurement reflects the
shape similarity between vectorized point clouds according to
the eigenvalues. The registration is to find the rotation O that
minimizes the Gi (K pre(Pa), O X Kpre(Fs)). According to
the Kendall theory, the minimum of the measurement is repre-
sented as

min{G g (Kpre(P,), OKpre(Py))} = arccostr(A), (6)

where R is the identity matrix that can be regarded as the
alignment based on the eigenvalues, and the trace of the A
corresponds to the minimum value of the measurement. The
rotation O,. and G i for registration can be deduced as

Kopre(Po) - (OrKpre(Py)) =tr(A),0 < O,  (7)
Gk (Kpre(P,), Kpre(Py)) = arccostr(A). (8)

Regrettably, the prerequisite for the above calculation is that
point clouds should be ordered or have point-based correspon-
dence according to the Wahba problem. In [8], the measurement
for unorganized point cloud is simulated by Hausdorff distance
which restricts the registration. To solve the problem, we provide
alocal shape matching method based on a partition structure that
is similar to the 3D shape context [27]. The point cloud is located
into an inscribed ball space. The partition structure is a set of
sub-spaces that are divided from the ball space. The sub-space
is defined by the elevation and azimuth. In each sub-space, we
select the point to be the representative sample that has largest
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Fig. 3.

An instance of partition structure with sub-spaces.

distance to the center. Then, the local shape matching between
points from different point clouds can be established based on
the sub-spaces. The local shape matching can be represented as

~7pk} S Kpre(Pc?)7
{Q17-- --an}erre(Pbo)a )

where p; and ¢; are two representative samples from aligned
sub-space ¢ of K pre(P?) and Kpre(P?) according to same
partition structure, P and P are subsets of P, and P, which
represent the representative samples in R> space. In this way,
(G i canbe computed by representative samples for current poses
of two point clouds. In Fig. 3, we show an instance to explain
the partition structure.

Although the representative samples can be used to represent
the external discrete shape form of a point cloud, the internal
geometric features are ignored. It brings a potential disadvantage
that the performance of measurement may deteriorate for point
cloud with symmetrical outer contour. Such disadvantage has
been discussed in KSS-ICP [8]. To overcome the defect, we in-
troduce geometric feature points to construct new representative
sample set, which considers the internal geometry features for
registration. Then the Eq (9) can be rewritten as

{p/la" ',Plk} GKPI‘Q(PZI)7
{q/p-- '7q;€} EKPFE(PI;)7

where p} and ¢} are geometric feature points, P, and P} are
feature point sets. Based on the two representative sample sets,
the (8) can be rewritten as

Gr(Kpre(Pa), Kpre(P)) = max{Gk (Kpre(Fy),
Kpre(P))), Gr (Kpre(Py): Kpre(Py))} (11)

where the new G is computed from the related subsets
of original point clouds P, and P,, which considers outer
contour and internal geometric features. Even the extracted
feature points are affected by defective parts and noise,
Gk (Kpre(P?2), Kpre(P?)) is used to keep the lower bound
estimation (same to (8)). In practice, we employ a straightfor-
ward feature point extraction strategy that is based on the local
fitting plane mapping distance D)., represented as

P;, = {p;‘Dpca(pi) > dthrypi S Pa}’a

where D, is the distance between point p; and its PCA-based
fitting plane according to the k-neighbor region (k = 12). If
the point p; is located onto a plane, then the D). (p;) = 0. On
the contrary, the D,,.,(p;) becomes larger when p; is located

{pla'-'vpia"

iy -

/
'7pi7"

oy (10)

12)
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Fig. 4.

Instances of P’ (red points). Internal geometric features are extracted
according to Dpcq.

on the region with sharp curvature changing. It can be used to
represent rough internal geometric features. We sort the { D¢ }
and set the threshold d;;, according to the point number we
need. In Fig. 4, instances of P’ are visualized.

As mentioned in Section III, the non-uniform scaling should
be estimated. The point set {xi,...,z,,} is changed to
{z!,...,x}.} that includes the representative samples based
on the partition structure. Based on the local correspondence,
the scaling factor is recomputed by the (2). Combined with
the following global searching scheme, different scales can be
normalized. Even if the resampled point number is not strictly
equal to m, the shape measurement is not affected. It should be
noticed that the achieved O, and Gk are just local registration
results based on the current poses with local registration. To
achieve the final registration result, the global searching strategy
is required.

V. GLOBAL SEARCHING SCHEME

The proposed shape measurement estimates the shape simi-
larity between point clouds based on the current poses. It can be
regarded as the local registration implemented in the partition
structure. Naturally, the achieved rotation O, is only a local
optimal result. To achieve the final registration result, we propose
the global searching strategy to search the global optimum result
in SO(3).

Briefly, the global searching strategy is a controllable exhaus-
tive searching process. Considering the shape measurement is
implemented in the current pose, we just rotate the source point
cloud according to the partition structure to change the pose.
Then, the global searching in SO(3) can be implemented. In
Fig. 5, an instance is shown. Let {O..} to be a candidate rotation
set, the target of the global searching strategy is to minimize the
shape measurement based on the { O }, which can be represented
as

argmin (K pre(Py) - (070K pre(P5))), 05 € {O.}, (13)

where Oy is a rotation transformation of {O.}. The global
searching strategy is to find the O to minimize shape measure-
ment. The computational complexity of the strategy is propor-
tional to the scale of {O,.}. Fortunately, the shape measurement
with different rotation transformations can be implemented in
parallel. We assign different computational units for {O.} to
compute the shape measurement. An instance of GPU-based
acceleration has been shown in Fig. 2. More implementation
details are discussed in Appendix.
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Fig. 5. An instance of global searching based on partition structure. The red
vector set is generated from representative samples and center from source point
cloud, the blue vector set is generated from representative samples and center
from template point cloud, the sector area labeled by light blue is the cell of the
partition structure. The global searching is to find the final registration result in
different cells one by one.

The prerequisite of the global searching strategy is that the
centers of point clouds are aligned. However, the defective parts
or missing sub-regions may change the semantic center of the
point cloud. To solve the problem, we add a candidate translation
set to fit the random movement of the center produced by the
defective parts. The Eq (13) is updated as

argmin (Kpre(Pa) - (0r05Si Kpre(P)))
Oy € {0}, S; € {5.},

where {S.} is the candidate translation set, S; is a translation
matrix from the { S, } torepresent the center movement. Combin-
ing the two candidate sets and shape measurement, the required
transfer matrix can be represented by O, x Oy x S;. Then, the
final transformation matrix can be estimated. It should be noticed
that the candidate sets take influences for the efficiency and
accuracy of the registration. we introduce the details of how
to generate the candidate sets in practice.

For candidate rotation set { O, }, we add the rotation units into
the set according to the three axes by specified angle. It can be
represented as

{OC} = {Of|0f = (niewanyeyvnzez)a
Ngly,ny0y,n.0, € {0,271} },

(14)

s)

where 0, 0,,, and 0, are unit angles based on three axes, 14, 7y,
and n_ are specified steps to control the rotation. The param-
eters decide the scale of the candidate rotation set that should
be consistent with the partition structure. In practice, we set
0, =0, =0, = 1/6m, andtherange of n;, n,, and n is defined
(ng, ny,n, € [0,11]). It can be computed that the candidate
rotation set O, contains 122 units. The number 12 is the rotation
parameter.

For candidate translation set {S.}, we add different trans-
lations for the center to estimate the influences produced by
defective parts. We generate the translations based on the local
coordinate system that is established by principal component
analysis (PCA). Following the PCA-based eigenvectors u, v, and
w, we generate the translation units that represented as

{SC} = {Sllsl = (nuluanvlwnwlw)}a (16)
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Fig. 6. Instances of candidate rotation and translation sets. First row: instances
of O.; second row: instances of S, (green points represent candidate centers).

Algorithm 1: Implementation of PKSS-Align.

Input: Source and Template point clouds Ps and P,

Output: Aligned point cloud Py

1:  Outliers pre-processing for P and P; by (3)

2 Achieve K pre(Ps) and K pye(P;) from processed P
and P, by (2)

3:  Generate {O.} and {S.} by (15) and (16)
4: Initialize P, < P;
5: Initialize C.. < Gi(Kpre(P:), Kpre(Ps))iocal bY
(11)
6: for (O, S;) € {O.},{S.} do
7: Kpre(Pj)%SiXOfXKpre(PS)
8: Cj — Gk:<Kpre(Pt)7Kpre(Pj))local by (11)
9: if C; < C, then
10: P+ Pj
11: Cc — Cj
12: end if
13:  end for

141 Pujign < Pe
Output: Py;gp

where [,,[,, and [,, are unit vectors according to the eigen-
vectors, n,,n,, and n. are length factors that controls the
translations. Unlike rotation set, there has not clear range for
translations. We artificially define a boundary to control the scale
of the translation set:

Nolu, Nply, Nl € [7|u‘/47 |U|/4] ) A7)

where |u| is the length of the eigenvector with largest eigenvalue.
The range ensures the center movement can be captured when
the defective parts is smaller than half according to experience.
We select 5 units based on the range for each direction. Then,
we achieve a translation set with 53 units. The number 5 is
the translation parameter. In Fig. 6, instances of O, and S, are
shown.

Based on the mentioned three components, the pipeline
of PKSS-Align is constructed which can be concluded in
Algorithm 1. It should be noticed that the rotation and translation
parameters (12 and 5 by default) have significant impact for
the performance of the registration. The larger values of them
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increase the computation cost without accuracy improvement
for registration. Conversely, the candidate sets with insufficient
rotations and center movements can not provide a functional
global searching in SO(3). The influences of the parameters
with different values are evaluated in quantitative analysis of
the experiment.

VI. EXPERIMENTS

We evaluate the performance of PKSS-Align in differ-
ent datasets, including ModelNet40 [58], S3DIS dataset [59],
3DMatch [60], and KITTI [61]. The experimental machine
equipped with Intel(R) i9-13900 K 3.00 GHz, 128 G RAM,
GeForce RTX4090. The running system is Windows 11 with
Visual Studio 2022 (64 b) and Pycharm 2022 as the de-
velopment platforms. The comparison methods involve vari-
ous mainstream technical routes, including original ICP [1],
NDT [24], FPFH [32], Go-ICP [23], PonitNetLK [6], Fast and
Robust-ICP [15], GeoTransformer [47], Maximal cliques [34],
REGTR [51], RoITr [53], and KSS-ICP [8]. First, we introduce
the selected datasets and related metrics for performance evalu-
ation of registration. Second, we test the robustness of different
methods for point clouds with different influence factors and
report the quantitative results. Then, we evaluate our method on
real scanning data. Finally, we show a comprehensive analysis
of our method, including influences of parameter selections and
algorithm characteristics analysis.

A. Datasets and Metrics

The test dataset of ModelNet40 contains 1235 models that is
sampled from each category by 10%. The S3DIS dataset con-
tains 272 indoor scenes with multi-objects. The 3DMatch and
KITTI datasets contains 171 models and 158 scenes. We add ran-
dom similarity transformations into the datasets to generate re-
lated source datasets. The transformation matrices are recorded
for further evaluation. The random similarity transformation
includes random rotation 6 € [—, 7] and scaling s € [0.5, 2].
For point clouds of S3DIS dataset, we implement the random
resampling to achieve simplified set. The reason is that the data
scale of original point cloud is too large (> 1, 000 K), which lim-
its the feasibility of some methods. To comprehensively evaluate
the robustness of registration methods in various scenarios, we
reconstruct a series of subsets with different types of interference
factors based on test datasets, including point cloud with defec-
tive parts, non-uniform densities, and random noisy points with
different levels. Some instances are shown in Fig. 7. Considering
some registration methods can not handle the different scales
of point clouds, a scale normalization method [57](PCA-based
bounding box) is used as the auxiliary function for comparative
methods.

To estimate the accuracy of the registration, we introduce
two mean squared errors (MSE) to provide qualitative results,
including closest point MSE and normal-based MSE(n). The
closest point MSE reflects the overlap degree intuitively. The
normal-based MSE(n) measures the local shape similarity based
on normal vector angle. Since we record the transformation
matrices for generation of source dataset, such matrices are used
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Fig. 7.
(GO0.2 and GO,6 mean two kinds of Gaussian noisy distributions).

as ground truth to support a similarity measurement for regis-
tration. We employ the cosine similarity to be the measurement
represented as

GT.os = arccos (T, T'), (18)

where T}, represent the recorded rotation matrix as the ground
truth with 3 x 3 values, T" is the generated rotation matrix as the
registration result, the cosine similarity G7,,s and registration
recall (RR) can be used as the quantitative evaluations for the
quality of registration. We set GT,,s > 0.8 and MSE< 0.001
(MSE-based condition is not used for 3DMatch and KITTI
datasets, sparse densities take unstable values) as the successful
conditions to obtain the statistical values of RR. In following
parts, we compare the performance of different registration
methods.

Implementation: For the GPU-based acceleration, we parallel
to compute the shape measurement between the representations
with 122 x 5% ({O.} x {S.}) times. In kernel function, the
shape measurement requires allocating some GPU memory to
store the intermediate results. Therefore, the number of threads
must be controlled to avoid GPU memory overflow. In practice,
we set the thread number to be 288 (122 x 2) for 750 blocks
(123 x 53/288). For ICP [1], the basic iteration step is set to 20,
and the transformation ¢ is set to 0.1. For NDT [24], the random
sample is set to 1,000, the transformation e is set to 0.01, the step
size is set to 0.05, the resolution is set to 3. For FPFH [32], the
random sample is set to 2,000, the searching radius is set to 0.05.
For Geo-Transformer [47], pre-training weights are selected
from 3DMatch. Since the model of Geo-Transformer is sensitive
to the scale, we change the initial voxel size (0.025 — 0.1 )
to fit the data of S3DIS. For MaxCliq [34], we control the
maximum of maximal clique (< 10k) to avoid non-convergence
situation. For KSS-ICP [8], the rotation searching range is set
to 12 that is same to PKSS-Align. The implementation codes of
such methods are provided by original authors.

B. Evaluation

Robustness to similarity transformations: We evaluate the
robustness of similarity transformations for different registration

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 12, DECEMBER 2025

Source Point Cloud with
Noise G0.2

Template Point Cloud

Source Point Cloud with

Source Point Cloud Noise G0.6

Generated source subsets with different types of interference factors, including non-uniform densities, defective parts, noisy points with different levels

methods in the test datasets. In Fig. 8, some registration results
are shown. The proposed PKSS-Align achieves better alignment
between source point clouds and template ones. To further
demonstrate the advantage of our approach in performance,
we report the quantitative analysis in Table I, which contains
average time cost, MSE, MSE(n) and GT,. It is clear that our
method achieves obviously improvement with SOTA methods
in different kinds of models. For RolTr, processing dense point
clouds requires significant GPU memory overhead. Excessive
down-sampling can lead to severe performance degradation in
the algorithm. Its results on S3DIS are not included in the rele-
vant tables. For REGTR, its convergence speed has exceeded the
normal range (> 1 hour), so some related data is also excluded
from the tables. Since the PCA-based scale normalization is
used to uniform scales of point clouds, the traditional global
searching strategy like Go-ICP can be converged efficiently.
However, point clouds of S3DIS dataset have been simplified
by random sampling, their global structures have been changed.
It reduces the performance of scale normalization which affects
the convergence of Go-ICP and Robust-ICP. Our method doesn’t
require the scale normalization while achieving the better align-
ment results. In addition, even PKSS-Align has similar structure
with KSS-ICP, the proposed PKSS-based shape measurement
provides more accurate metric for point cloud alignment. It
supports more efficient point cloud alignment.

Robustness to defective parts and non-uniform densities: As
shown in Fig. 7, we generate ModelNet40 and S3DIS sub-
sets with similarity transformations, defective parts, and non-
uniform densities to evaluate the robustness of our method. First,
we artificially delete some regions of point clouds to generate
defective parts that are controlled between 30% and 50% of
global ones. For non-uniform densities generation, we compute
the bounding box of point cloud and delete points according to
a fixed step. Then, we achieve point clouds with band distribu-
tions that simulate the interlaced scanning data. Based on the
subsets, we evaluate the performance of different registration
methods. In Fig. 9, Table II and Table III, we visualize some
registration instances and report related quantitative results.
Since the performance of scale normalization depends on the
complete geometric structure, the defective parts bring some
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Fig. 8. Registration results by different methods based on point clouds with similarity transformations.

TABLE I
EVALUATIONS IN MODELNET40 AND S3DIS DATASETS WITH SIMILARITY TRANSFORMATIONS

Dataset | ModelNet40 | S3DIS

Methods\ Metric | Time] MSE| MSE(mn)] GTcosT RRT | Time] MSE| MSE(m)] GTcosT RRT
ICP [1] 1.981s 0.01253 0.6915 0.4259 11% 60.137s 0.7535 1.0017 0.2457 <10%
NDT [24] 3.719s 0.01157 0.6735 0.4079 10% 19.591s 204.421 1.0886 0.2092 <10%
FPFH [32] 16.665s  0.00106 0.2163 0.6837 52% 69.399s 0.06832 0.6871 0.3084 11%
Go-ICP [23] 33.101s ~ 0.00014 0.0885 0.7824 68% —_— —_— —_— e
PointNetLK [6] 0.903s 0.02621 0.7476 0.3871 <10% 7.334s 1.16521 0.9449 0.2852 <10%
Fast-ICP [15] 6.798s 0.00808 0.5255 0.4668 24% 113.513s  0.08390 0.7673 0.3117 14%
Robust-ICP [15] 22.921s  0.01207 0.4849 0.4838 26% 251.649s  0.12021 0.7688 0.3177 13%
Geo-Transformer [47] 0.563s 0.09309 0.8018 0.4776 <10% 0.987s 2.3514 1.1223 0.2292 <10%
MaxCliq [34] 2.513s 0.02898 0.4558 0.6688 22% —_— e e —_—

REGTR [51] 8.8032s  0.37211 1.12591 0.2551 <10% —_— —_— e —_— —_—
RolTr [53] 0.6283s  0.00846 0.2472 0.6124 49% —_— e —_— e —_—
KSS-ICP [8] 2.899s 0.00033 0.1233 0.7648 65% 11.746s 0.00837 0.1199 0.8604 79%
PKSS-Align 2.938s 0.00051 0.0589 0.9026 80% 12.226s 0.00493 0.1187 0.8826 82%
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Fig. 9. Registration results by different methods based on point clouds with similarity transformations, defective parts, and non-uniform densities.

TABLE II
EVALUATIONS IN MODELNET40 DATASET WITH SIMILARITY TRANSFORMATIONS, DEFECTIVE PARTS, AND NON-UNIFORM DENSITIES

Dataset | ModelNet40 (defective parts) | ModelNet40 (non-uniform densities)
Methods\Metric | Time, MSE] MSEm] GTcost RRT | Time| MSE| MSE(m)] GTcosh RR?
ICP [1] 1.371s  0.01197 0.7832 0.3997 13% 1.958s  0.01236 0.6973 0.4266 17%
NDT [24] 3.362s 0.01225 0.7717 0.3804 11% 4.842s 0.01171 0.6806 0.4084 15%
FPFH [32] 11.245s  0.00338 0.3923 0.6674 47% 15.991s  0.00107 0.2381 0.7062 56%
Go-ICP [23] —_— —_— —_— e 23.961 0.00014 0.1342 0.7811 67%
PointNetLK [6] 0.813s  0.03543 0.8505 0.3856 <10% | 0.658s  0.02551 0.7569 0.3867 11%
Fast-ICP [15] 6.235s  0.01261 0.5945 0.4536 20% 5.625s  0.00794 0.539 0.4712 24%
Robust-ICP [15] 43461  0.01243 0.5896 0.4556 21% 30.637s  0.01179 0.5115 0.4801 26%
Geo-Transformer [47] | 0.667s  0.09329 0.8423 0.4415 13% 0.628s 0.0952 0.8358 0.4542 17%
MaxCliq [34] 1.236s  0.02359 0.4665 0.6856 45% 1.212s  0.02318 0.4369 0.7016 51%
REGTR [51] 7.764s 0.34431 1.1349 0.2481 <10% 7.895s 0.37201 1.1249 0.2579 <10%
RolTr [53] 0.689s  0.03012 0.5855 0.4885 32% 0.652s  0.01539 0.3836 0.6938 54%
KSS-ICP [8] 39.438 = 0.00152 0.4263 0.5886 40% 2.697s  0.00039 0.1753 0.7677 65%
PKSS-Align 3.652s 0.00712 0.3636 0.7039 57% 2.901s 0.00013 0.1041 0.9115 87%
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TABLE III
EVALUATIONS IN S3DIS DATASET WITH SIMILARITY TRANSFORMATIONS, DEFECTIVE PARTS, AND NON-UNIFORM DENSITIES

Dataset | S3DIS (defective parts) | S3DIS (non-uniform densities)

Methods\ Metric | Time] MSE| MSEm)] GTcost RRt | Time] MSE| MSE(n)| GTcost RR?T

ICP [1] 51.821s 1.5664 1.0224 0.2747 27% 44.852s 1.2599 1.0003 0.2865 11%

NDT [24] 24.119s  204.103 1.1067 0.2095 <10% 13.012s 204.401 1.0851 0.2326 <10%
FPFH [32] 41.895s 0.1414 0.7553 0.3955 11% 37.119s 0.07430 0.7014 0.4719 25%

PointNetLK [6] 5.497s 1.5134 0.9598 0.3071 <10% 6.253s 1.1028 0.9399 0.3224 <10%
Fast-ICP [15] 70.096s 0.1131 0.7594 0.3656 11% 44.302s 0.08438 0.7631 0.3093 <10%
Robust-ICP [15] —_— —_— —_— —_— 213.719s 0.1156 0.7627 0.3276 12%

Geo-Transformer [47] 0.987s 2.3514 1.1223 0.2292 <10% 1.036s 2.235 1.0968 0.2242 <10%
MaxCliq [34] 15.223s 2.4223 0.9368 0.2833 <10% —_— —_ —_ _

KSS-ICP [8] 14.298s 0.0881 0.6033 0.4588 22% 8.466s 0.008371 0.1350 0.8583 78%
PKSS-Align 12.961s 0.0527 0.4744 0.6751 49% 14.321s 0.007019 0.1409 0.8699 80%
TABLE IV
EVALUATIONS IN S3DIS DATASET WITH DIFFERENT KINDS OF GAUSSIAN NOISE

Dataset | S3DIS (r = 0.2) | S3DIS (r = 0.4) | S3DIS (r = 0.6)
Methods\Metric | Time, MSE| MSEm)| GTcos? | Timel MSE| MSEm), GTeos? | Timel MSE| MSEm)| GTcost
ICP [1] 74.333s 1.4551 1.0124 0.2736 65.401s 1.532 1.021 0.2718 62.572s 1.5216 1.023 0.2719
NDT [24] 20.843s  182.228 1.10314 0.2131 22.098s  204.068 1.1038 0.2102 23.578s 204.103 1.1044 0.2095
FPFH [32] 44.822s 0.1154 0.7374 0.4392 46.595s 0.1223 0.7442 0.4125 46.303s 0.1234 0.7399 0.3989
PointNetLK [6] 8.555s 1.4534 0.9649 0.3055 6.316s 1.5078 0.9644 0.3051 5.739s 1.5004 0.9638 0.3052
Fast-ICP [15] 80.642s 0.1104 0.7673 0.3537 90.602s 0.1098 0.7674 0.3477 118.256s 0.1112 0.7751 0.3617
Geo-Transformer [47] 1.236s 2.2317 1.1239 0.2272 1.243s 2.1828 1.1177 0.2251 1.251s 2.3735 1.1271 0.2199
MaxCliq [34] 17.172s 2.0971 0.9671 0.2609 20.931s 2.0537 0.9826 0.2856 23.041s 2.2453 0.9625 0.2741
KSS-ICP [8] 48.242s  0.08742 0.6105 0.4661 47.229s  0.08299 0.5996 0.4704 45.842s 0.09519 0.6131 0.4568
PKSS-Align 15.928s  0.05037 0.4802 0.6661 13.347s  0.05172 0.4814 0.6798 14.241s 0.05172 0.4814 0.6705

uncontrollable degradation in registration. Influenced by the
condition, the GO-ICP cannot be converged with a reasonable
time cost. To extent the searching region on SO(3), the KSS-ICP
increases the time cost obviously. Limited by the Hausdorff met-
ric, the performance of KSS-ICP is further reduced for defective
point clouds. In comparison, the PKSS-Align overcomes the
limitation with PKSS-based shape measurement and optimized
parallel acceleration.

Robustness to noisy points: In real scenes, the raw point
clouds take random noisy points produced by particulates and
low precision scanning equipment. Therefore, the registration
method should robust to noisy points in a certain degree. To
evaluate the robustness, we generate some subsets with different
kinds of noisy points based on S3DIS dataset, which are used
to simulate real random noise. In order to approximate real
situations, we applied the same defect operation as mentioned in
previous subsection to all noisy point clouds, which is to simulate
obstruction. According to the different distributions, we add two
kinds of noise into point clouds, including Gaussian and mean
noise. The Gaussian noise is generated by normal distribution
N(0,0). The generation is formulated as

P = pi +ni - my,

m; € {m},{m} ~ N(0,0%),0 =r 1, (19)

where p/, is the noisy point that is computed from the original
point p; with a random movement m; according to the normal
vector n;. The values of {m} satisfy the normal distribution.
The o is the distributed control parameter that is computed by
the input noisy range 7 and [, (I, is the average length between

points and their k neighbors, k£ = 12 by default). The range r
controls the value of o that reflects the degree of the noise. We
generate three kinds of Gaussian noise with different ranges (0.2,
0.4 and 0.6). Replacing the distribution to uniform one U (0, o),
we get test datasets with mean noise. We also use three values
of r (0.2, 0,4 and 0.6) to construct three kinds of mean noise.
In Fig. 10 and Table IV, we show some registration results and
report quantitative data for the methods in noisy point clouds.
The Go-ICP and Robust-ICP cannot achieve convergence results
with an acceptable time cost (< 5 min). For Geo-Transformer,
the performance is limited by complex parameters and pre-
training weights. In comparison, our method is able to achieve
better results.

It should be noted that some methods show lower performance
than the reported in original papers. The reason is that we intro-
duced scale variations in the dataset. Even with PCA-based scale
normalization, the performance of general methods tends to
degrade under the combined influence of large pose differences.
Some methods achieve relatively better MSE values but perform
poorly in RR metrics (Go-ICP in Table I). It means that target
point clouds contain symmetrical structures, causing optimiza-
tion based on point-to-point distances to fail in achieving correct
pose alignment. This indirectly demonstrates the effectiveness
of shape measurement in registration tasks.

Evaluation on real scanning data: The mentioned point
clouds for registration are generated with artificially interference
factors like Gaussian noisy points and specific defective parts.
In real scenarios, the raw scanning data contains more random
points ans sub-structures. Therefore, the registration perfor-
mance should be evaluated on real scanning data. We report the
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Registration results by different methods in the S3DIS with similarity transformations and different kinds of noise. First and second lines show point

clouds with Gaussian noise (r = 0.6); third and fourth lines show point clouds with mean noise (r = 0.6).

TABLE V
EVALUATIONS IN S3DIS DATASET WITH DIFFERENT KINDS OF MEAN NOISE

Dataset | S3DIS (r = 0.2) | S3DIS (r = 0.4) | S3DIS (r = 0.6)
Methods\Metric | Time] MSE| MSEM)| GTeost | Time, MSE, MSEM)| GTeost | Timel MSE| MSEM)| GTeost
ICP [1] 51.618s 1.4901 1.0256 0.2692 60.464s 1.5154 1.0173 0.2744 60.438s  1.5048 1.0277 0.2698
NDT [24] 19.339s 204.103 1.1047 0.2105 21.126s  204.151 1.1061 0.2089 22.675s  204.07 1.1046 0.2103
FPFH [32] 41.247s 0.1259 0.7456 0.4073 43.105s 0.1212 0.7378 0.4121 45.351s 0.1191 0.7195 0.4382
PointNetLK [6] 5.871s 1.5422 0.9613 0.305 7.902s 1.5354 0.9636 0.3047 5.735s 1.5537 0.9646 0.3046
Fast-ICP [15] 130.751s 0.1141 0.7616 0.3528 93.272s 0.1113 0.7608 0.3641 87.438s  0.1135 0.7711 0.3668
Geo-Transformer [47] 1.102s 1.9686 1.1161 0.2331 1.111s 2.4561 1.1273 0.2383 1.208s 2.4974 1.1211 0.2288
MaxCliq [34] 12.441s 2.5799 0.8989 0.2878 14.252s 2.2542 0.9224 0.2661 17.142s  2.2061 0.9751 0.2706
KSS-ICP [8] 46.989s 0.0980 0.6059 0.4669 46.915s 0.0879 0.6061 0.4633 45.151s  0.0816 0.6024 0.4762
PKSS-Align 11.836s 0.0526 0.4761 0.6581 12.698s 0.0518 0.4836 0.6399 12.915s ~ 0.0501 0.4753 0.6753

measurement results based on 3DMatch and KITTI in Fig 11
and Table VI. They take point clouds with significant defective
parts and sparse densities. We also collect a small dataset with 46
scanning point clouds that achieved by handheld laser scanner,
mobile phone with structured light scanning camera, and drone.
Some instances are shown in Figs. 12 and 13. The quantitative
results are reported in Table VII. For real scanning data, most
methods cannot achieve accurate results with reasonable con-
vergence speed and computational overhead. Few methods can
achieve results efficiently, but the performance is unstable. In
contrast, our method achieves better registration accuracy with
higher efficiency.

C. Analysis

Complexity: We have reported the time cost of different meth-
ods in Tables I-V. The deep encoding-based methods achieve
improvement for registration with O(N) complexity, including
the encoding of the point clouds and the pose estimation are
approximately linear calculations. However, the accuracy of

registration is not stable. Such methods are sensitive to the
large rotations. RolTr enhances performance across various
poses. However, it still struggles with non-uniform scales. The
complexity of ICP is O(NN?) that is related to the input point
number and initial poses. The Go-ICP is a global searching
strategy that is similar to our method. The drawback is the
lower computational efficiency. In addition, the convergence
cannot be guaranteed when dealing with point clouds with ob-
vious scale differences and large volume. The FR-ICP improves
the robustness of original ICP for point clouds with complex
similarity transformations, but the performances are sensitive to
the defective parts and noisy points. As the state of the art, the
MaxCliq achieves fast computation speed and better accuracy
for point clouds with lower overlap regions. However, the used
graph searching strategy may fail to converge with a certain
probability. In practice, the registration process is crash for some
point clouds. The limitations of KSS-ICP have been discussed
before. To handle the limitations, the PKSS-Align redesign
the shape measurement and global searching strategy which
improve the accuracy for scale estimation, shape alignment,
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Fig. 11. Registration results by SOTA methods in the 3DMatch and KITTI models with significant posture differences.
TABLE VI
EVALUATIONS IN 3DMATCH AND KITTI DATASETS WITH SIMILARITY TRANSFORMATIONS

Dataset | 3DMatch | KITTI

Methods\ Metric | Time | MSE| MSEMm)| GTcos? RRT | Time| MSE| MSEMm)! GTcos?t RRT
ICP [1] 19.894s 0.02729 1.0244 0.3486 23% 1.723s 165.131 0.9779 0.4915 33%
NDT [24] 19.919s 0.02736 1.0212 0.3528 18% 2.616s 224.375 1.0595 0.3959 19%
FPFH [32] 26.533s 0.00528 0.6322 0.8619 83% 20.112s 2.1131 0.6918 0.9312 89%
Go-ICP [23] —_— —_— —_— 262.097s 6.5074 0.5948 0.6699 51%
PointNetLK [6] 2.591s 0.07212 1.0795 0.3491 16% 0.643s 211911 0.9963 0.4123 21%
Fast-ICP [15] 39.856s 0.01926 0.9678 0.4071 24% 3.204s 10.0256 0.7241 0.5560 35%
Robust-ICP [15] 269.319s  0.02557 0.9448 0.4186 24% 25.301s 17.0675 0.6976 0.5548 34%
Geo-Transformer [47] 0.689s 0.1921 1.1694 0.2329 <10% 0.238s 411.909 1.2244 0.2204 <10%
MaxCliq [34] 2.223s 0.05279 0.7652 0.8135 79% 4.414s 398.298 1.1944 0.2366 <10%
REGTR [51] 86.848s 0.09001 0.9196 0.5456 44% 61.1265s  397.374 1.1682 0.2284 <10%
RolITr [53] 3.8771s 0.06951 0.7578 0.7421 63% 0.6898s 77.299 0.8519 0.8297 79%
KSS-ICP [8] 3.138s 0.0005 0.0623 0.9485 93% 9.776s 29.506 0.7474 0.5439 34%
PKSS-Align 5.294s 0.0008 0.0398 0.9785 97% 1.626s 3.3382 0.5113 0.9063 87%

TABLE VII

EVALUATION IN REAL SCANNING DATASET

Dataset | Real Scanning Dataset
Method\Metric | Time| MSE| MSEm)]
FPFH [32] 39.433s  3.41E+05 0.7671
Fast-ICP [15] 17.025s  3.90E+05 0.7412
KSS-ICP [8] 7.314s  3.07E+03 0.4422
PKSS-Align 7.289s  1.56E+02 0.2856

and computational efficiency. Especially for point clouds with
different scales and defective parts at the same time, PKSS-Align
achieves more stable performance to support application in
actual scenarios.

Ablation: Some parameters related to the PKSS-Align should
be discussed, including resampling, rotation and translation
parameters. The resampling mentioned in pre-processing is to
balance the efficiency and precision. The higher resampling rate
produces redundant points that reduce the efficiency. On the
contrary, insufficient points break the shape feature of original
point cloud and reduce the accurate of PKSS-based shape mea-
surement. We compute the MSE-based curves with different
resampling numbers. The results are visualized in Fig. 14 with
quantitative analysis in Table VIII. It cannot be regarded as a
corresponding simplification of the original point cloud when
there are too few sampling points. More shape features are
ignored. On the contrary, too many sampling points increase
the computational cost without significant improvement for
accuracy.
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Registration results in the real scene. The registration methods align scan2 to scanl. Point clouds are scanned by iphonel2pro.

Scanl Scan2 FPFH

Fig. 13.

Based on the experimental results, the proper resampling
number should be controlled around 3k ~ 5k for the balance.
The rotation and translation parameters mentioned in Section V
also take important influence in registration. Similar to the re-
sampling, larger values of the parameters support more accurate
global searching based on the PKSS-based shape measurement.
Benefited from the GPU-based acceleration, the time cost does
not significantly increase with |O.|. In Fig. 14 and Table VIII,
we compare the MSE-based curves and related metrics with
different numerical combinations of the parameters in Model-
Net40 and S3DIS test datasets. For point clouds with symmetric
structures, more rotation searching cannot improve the accu-
racy without internal geometric feature analysis. Once internal
geometric features are added into the shape measurement, the
registration accuracy and rotation searching show a significant

Fast-ICP KSS-ICP

PKSS-Align

Registration results in the real scene. The registration methods align scan2 to scanl. Point clouds are scanned by LiDAR device.

proportional relationship. Based on the above analysis, we set
the default parameters mentioned in Section V.

To better illustrate the roles of different components in PKSS-
Align, we additionally compare the registration performance
under various module combinations. Table IX shows registration
results based on S3DIS. First, we report the registration result
by PKSS-based shape measurement without global searching
scheme. This reduces our method to a local registration scheme,
approximating the original ICP. Then, We use point-based metric
to instead the PKSS-based shape measurement. It reduces the
proposed method to its earlier version (KSS-ICP).

Limitations: In essence, PKSS-Align is looking for a contour-
based shape matching based on the discrete form of point
cloud. The contour is constructed by representative samples
while considering the internal geometric features. For low
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Resampling Number (K) Rotation Range
Fig. 14.  MSE(n)-based curves generated by related parameters. Left: PKSS-
Align registration results with related resampling numbers in different test
datasets ("DF” means dataset with defective parts); right: PKSS-Align regis-

tration results with related rotation ranges ( 3 /|O.|) in different test datasets
("NG” means the geometric feature points are not considered).

TABLE VIII
EVALUATIONS OF PKSS-ALIGN ON S3DIS WITH DIFFERENT PARAMETER SETS.
TRANSLATION |S| IS THE NUMBER {.S. } MENTIONED IN (16), ROTATION |O|
1S THE NUMBER {O, } MENTIONED IN (15), RESAMPLING NUMBER MEANS

10369

Scan (b)

Scan (a)

Overlapped Region

Fig. 15.  Instance of low overlapped point cloud registration. Scan (a) and scan
(b) are two point clouds scanned from same scene, the yellow lines label the
overlapped region between (a) and (b).

TABLE X
EVALUATIONS OF PKSS-ALIGN ON LOW OVERLAPPED POINT CLOUDS OF
3DMATCH
Methods \ MSE| MSEMm)] GTcos? RR?T
GeoT [47] 0.40861 0.7162 0.3034 <10%
PKSS-Align | 0.02914 0.8706 0.5545 42%

THE VALUE OF m BY RESAMPLING METHOD MENTIONED IN (2)

Translation | Rotation | Resampling || Time MSE  MSE(n)
1,000 9.874s  0.0512  0.5071
|Oc| = 103 3,000 13.765s  0.0653  0.4754
5,000 16.644s  0.0576 0.4425
1,000 7.562s  0.0485 0.4555
1Se| =33 | |0 =123 3,000 11.892s  0.0451  0.4454
5,000 27.122s  0.0433 0.4731
1,000 11.096s  0.0492  0.3898
|O¢| = 143 3,000 11.765s  0.0607  0.3915
5,000 17.895s  0.0501 0.4242
1,000 10.075s  0.0494  0.5199
|O¢| = 103 3,000 19.029s  0.0664 0.5136
5,000 20.459s  0.0562 0.4273
1,000 5.562s  0.0543 0.4627
[Sc| =53 | |Oc| =123 3,000 11.751s  0.0337  0.4172
5,000 18.042s  0.0385  0.4487
1,000 5.832s  0.0368  0.4108
|O¢| = 143 3,000 24.343s  0.0456 0.3864
5,000 24.417s  0.0455 0.3769
TABLE IX

EVALUATIONS OF PKSS-ALIGN ON S3DIS WITH AND WITHOUT RELATED
MODULES (MEASUREMENT: PKSS-BASED SHAPE MEASUREMENT, GLOBAL:
GLOBAL SEARCHING SCHEME)

Measurement  Global | MSE| MSEm)] GTcos?
v 0.07339 0.6327 0.4852
v 0.00871 0.1353 0.4498
v v 0.00493 0.1187 0.8826

overlapped point clouds that are shown in Fig. 15, the perfor-
mance of PKSS-Align will degrade with high probability. Ta-
ble X shows quantitative results for low overlapped point clouds
from 3DMatch (overlap region is less than 50%). Even with
the global searching scheme, the registration recall degraded to
below 45%. The reason is that there is no global correspondence
between low overlapped point clouds according to the contour.
Forcibly using PKSS-Align for registration will only yield a
local matching result. Nevertheless, PKSS-Align is already ca-
pable of handling the majority of registration tasks in practice.
It can achieve accurate registration results for point clouds with

more than half overlapped regions while taking defective parts,
larger pose and scale differences, and noisy points.

VII. CONCLUSION

In this paper, we propose a robust point cloud registration
method PKSS-Align that is implemented on Pre-Kendall shape
space. It estimates the transformation matrix between point
clouds by PKSS-based shape measurement that is robust to sim-
ilarity transformations, non-uniform densities, and noisy points.
With a practical implementation of global searching strategy, the
proposed registration also can align point clouds with defective
parts while keeping the efficiency. It does not require additional
deep feature-encoding and data training. Experiments show that
our method has good performance in different registration tasks.
In future work, we consider combining the overlapped region
searching in our framework. With the overlapped regions, the
PKSS-Align can handle various registration tasks.
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