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Abstract
For camera-based image capturing, the impact of exposure or cam-
era parameters (ISO sensitivity, shutter speed, and aperture F-
number) on imaging quality is decisive. Such parameters interact
in a coupled manner during the imaging process to determine the
exposure quality and the degree of blur in a photograph. Naturally,
decoupling such parameters from images holds significant value for
applications like image quality assessment and illumination opti-
mization. However, there has been no systematic research dedicated
to this topic. In this paper, we propose a new benchmark, Cam-
Bench, for estimating camera parameters on images directly. It col-
lects an image dataset Cam-10K with various indoor scenes and ac-
curate labels of camera parameters. Based on Cam-10K, we propose
a camera parameter estimation network to decouple and regress
recorded exposure information. To the best of our knowledge, Cam-
Bench is the first benchmark for camera parameter estimation.
Experiments demonstrate that it can enhance the performance of
various downstream applications.The source code has been made
publicly available at: https://github.com/pengquanhong/CamBench.
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• Computing methodologies → Computer vision; Image pro-
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Figure 1: Illustration of Cam-Bench. With a collected dataset
Cam-10k, Cam-Bench implements a camera parameter es-
timation that supports related downstream tasks (lighting
enhancement, IQA, and auto-parameter recommendation).
ACM Reference Format:
Quanhong Peng*, Dan Zhang*†, Dong Zhao, Jianpeng Zhang, Meihua Song,
and Chenlei Lv†. 2025. Cam-Bench: A Benchmark for Image-based Camera
Parameter Estimation. In Proceedings of the 33rd ACM International Con-
ference on Multimedia (MM ’25), October 27–31, 2025, Dublin, Ireland. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3746027.3754875

1 Introduction
For computational photography, optimizing camera parameters
(ISO sensitivity, shutter speed, and aperture F-number) is important
to achieve high-quality visual outputs. The ISO sensitivity directly
affects brightness and noise levels, whereas the aperture F-number
controls light intake and depth of field, and the shutter speed deter-
mines exposure duration and motion blur effects. These parameters
collectively define the exposure quality of captured image. Some
suboptimal combinations can introduce irreversible artifacts such
as sensor noise (high ISO), compressed dynamic range (small aper-
ture F-numbers), or motion-induced blur (slow shutter speeds).
Although traditional photography techniques are based on empiri-
cal knowledge and most camera devices offer automated parameter
recommendations, their effectiveness still has certain limitations,
particularly in dynamic scenes where manual exposure and contrast

7663

https://github.com/pengquanhong/CamBench
https://doi.org/10.1145/3746027.3754875
https://doi.org/10.1145/3746027.3754875
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746027.3754875&domain=pdf&date_stamp=2025-10-27


MM ’25, October 27–31, 2025, Dublin,Ireland Quanhong Peng et al.

adjustments remain indispensable even for professionals. Therefore,
conducting research on the impact of camera parameters on image
quality is essential, both in practical applications and theoretical
frameworks.

The accurate prediction of intrinsic camera parameters remains
a fundamental challenge in computational photography, as it es-
sentially requires decoupling camera parameters from the captured
image. Currently, most research works focus on illumination mod-
eling and optimization, including low-light recovery [22] and HDR
reconstruction [15]. Such solutions attempt to improve exposure
and image perceptual quality, typically using parametric curves or
convolutional neural operators at the pixel level. However, they are
essentially data-driven post-processing operations that lack explicit
modeling of the physical imaging process, making it difficult to
accurately quantify the independent effects of individual decoupled
parameters. Naturally, the lack of research on the estimation of
decoupled parameters reduces the controllability of the evaluation
and optimization of image exposure quality.

To address this challenge, we propose Cam-Bench, a novel bench-
mark for image-based camera parameter estimation, as shown in
Figure 1. The benchmark comprises: 1) Cam-10K, the first large-
scale image dataset with accurate camera parameter priors covering
complex illumination scenarios (e.g., museums and laboratories);
2) a dedicated parameter estimation framework built upon a
Retinex-inspired Convolutional Neural Network (CNN) architec-
ture. The framework utilizes a dual-stream architecture to extract
scene-specific features (illumination gradients, exposure charac-
teristics) and learn camera-specific parameter mappings. A cross-
exposure fusion module enables joint pixel-level optimization of
parameter-content adaptation. Crucially, we introduce a physics-
derived latent metric, the exposure brightness number (EBN) to
enable dynamic parameter adaptation across diverse illumination
scenarios, which estimates camera parameters with semantic con-
sistency. To our knowledge, Cam-Bench represents the pioneering
effort for independent camera parameter estimation. As demon-
strated in Figure 1, it establishes new baselines for illumination-
related downstream tasks, including lighting-aware IQA, adaptive
exposure optimization, etc. The contribution can be concluded as:

• We construct an image dataset Cam-10K that is a com-
prehensive indoor(e.g., museums and laboratories) dataset
specifically designed for precise camera parameter estima-
tion It contains 10,000 real-world scenes captured under
controlled illumination conditions (overexposure, underex-
posure, and normal exposure). Each image is annotated with
accurate photographic metadata including ISO sensitivity,
aperture (F-number), and shutter speed, providing enough
samples for data-driven camera parameter analysis.

• We present a camera parameter estimation network that is
a pioneering approach to the best of our knowledge. The
proposed dual-branch architecture employs a CNN back-
bone to implement a novel cross-exposure fusion module
for joint parameter-content optimization. A key innovation
is our physics-derived Exposure Brightness Number (EBN),
which enables dynamic parameter adaptation across diverse
illumination conditions.

• We illustrate the significant improvement of Cam-Bench in
a set of downstream tasks, including illumination transfer,

parameter-adaptive lighting optimization, exposure quality
assessment, and auto-parameter recommendation for photo
capturing. Comprehensive experiments validate that Cam-
Bench establishes new state-of-the-art performance in both
parameter estimation accuracy and related applications. For
lighting optimization task, PSNR-based IQA can be increased
by 24.41% with Cam-Bench.

2 Related Work
Estimating camera parameters from an image can be understood
as a decoupling process of the illumination. Although such direct
estimation is not a common research topic, studies on illumination
modeling and exposure optimization are highly relevant. In this
section, we review studies on illumination modeling and exposure
optimization.

Statistical Scheme. Traditional image illumination enhance-
ment techniques use statistical approaches such as histogram equal-
ization (HE) to optimize illumination conditions through dynamic
expansion of the image’s intensity range. These techniques operate
through histogram redistribution through either global [3, 9] or
local [14, 19] levels. Global histogram equalization methods uni-
formly adjust the pixel intensities across the entire image to achieve
statistically balanced results. However, such methods are limited in
flexibility for illumination optimization due to the requirement of
maintaining global consistency [17, 18]. In contrast, local strategies
offer greater flexibility as local variants apply adaptive process-
ing within image sub-regions to preserve local contrast [4]. The
trade-off is that they cannot guarantee semantic consistency in
images, potentially leading to erroneous color bleeding. These ap-
proaches perform coupled analysis of image color and illumination
conditions, but cannot support inverse parameter parsing.

Retinex-based Solution. An alternative paradigm builds upon
the Retinex theory [13], which formulates image enhancement
through intrinsic decomposition into reflectance (scene albedo) and
illumination components. Assuming reflectance remains lighting-
invariant, these methods focus on accurate illumination estimation.
Recent advances include naturalness-preserving framework for
non-uniform illumination [21], joint reflectance-illumination es-
timation via weighted variational modeling [5], structure-guided
illumination refinement [7], and noise-aware optimization formu-
lation [16]. Compared to HE-based approaches, these methods pro-
vide physically-grounded enhancement by explicitly modeling il-
lumination effects, thereby better maintaining natural appearance
while suppressing artifacts.

Deep Feature-based Scheme. Recent deep learning methods
for illumination optimization have evolved along two main direc-
tions. The first direction focuses on enhancing image spatial rep-
resentation through advanced network architectures, exemplified
by Retinex-based CNN[23, 28, 29] that decompose images into il-
lumination and reflectance components, as well as GAN-based
approaches like EnlightenGAN [11] that enable unpaired train-
ing through adversarial learning. Although these approaches have
shown promise, they often struggle with noise amplification and
color distortion in challenging lighting conditions. Alternative solu-
tions like Zero-DCE [6] reformulate the problem as image-specific
curve estimation, eliminating the need for reference data but still
operating within the limitations of processed RGB images.
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Figure 2: Some collected instances according to the "fix-two-
predict-one" strategy. First row: keeping shutter speed &
aperture and changing ISO sensitivity; second row: keeping
shutter speed & ISO sensitivity and changing aperture; third
row: keeping ISO sensitivity & aperture and changing shutter
speed. In each row, smooth changing in image brightness is
clearly observable with parameter value increasing.

The second direction addresses these constraints by directly
processing RAW sensor data. Classical work [2] demonstrated that
end-to-end neural networks could reconstruct high-quality images
while avoiding traditional image signal processing(ISP) pipeline
constraints. Subsequent advances like ParamISP [12] achieved more
accurate modeling by explicitly incorporating camera parameters
such as exposure time and ISO sensitivity. Parallel developments
in reversible ISP architectures [25, 27] have improved bidirectional
mapping between RAW and sRGB spaces, though most methods
still neglect the critical role of camera-specific parameters in the
imaging process.

In this paper, we fully draw upon the research achievements of
previous works and propose Cam-Bench that directly extracts cam-
era parameters from images. It is equivalent to obtain a decoupled
representation of illumination model through feature analysis from
the image. Driven by collected dataset with prior parameters, the
estimation becomes compatible with semantic information. In fol-
lowing parts, we introduce implementation details of Cam-Bench.

3 Dataset Collection
To implement the camera parameter estimation, we collect a new
dataset Cam-10K as the data part of Cam-Bench. It takes more
than 10,000 images with comprehensive illuminations to advance
computational photography research, particularly in camera pa-
rameter estimation, enhancement, and quality assessment. Each
sample of Cam-10K should take clear prior parameters to be the
ground truth labels. It captures eight diverse scenes (e.g., muse-
ums, libraries) under varying natural/artificial lighting, enabling
systematic study of how camera parameters (ISO, shutter speed(A),
aperture(F)) impact image quality. Each parameter was adjusted
across 10 levels (ISO:400-3200 in 10 EV steps, F:2.8–11 with 1-stop
increments, A:1/80s–1/640s in 10 logarithmic steps), generating
total 103 unique parameter combinations per scene.

A critical challenge arises from the inherent many-to-one map-
ping in photographic parameter spaces: different parameter com-
binations (e.g., high ISO vs. long exposure) can produce radiomet-
rically equivalent images under fixed scene illumination. It raises

an issue: if we train a supervised network using GT annotations to
predict camera parameters, the stability of the predicted results are
inherently ambiguous. To address the issue, we employ a "fix-two-
predict-one" strategy to record annotations, where two parameters
are held constant to predict the third one. It allows to explicit bright-
ness analysis, as shown in Figure 2. Cam-10K is split into two parts:
8,000 training images for parameter learning across lighting con-
ditions, and 2,000 test images for evaluation. The test image set
combines real captures, synthetic images (from lighting software),
and curated MIT-Adobe FiveK [1], ensuring the generalization in
practice. Based on the collected Cam-10K, we can implement cam-
era parameter estimation based on a supervised or semi-supervised
framework. The dataset stores parameter variation and scene di-
versity offer a robust benchmark for computational photography.
The large-scale training data supports model adaptability, while
the hybrid test set validates real-world applicability. By bridging
controlled experiments and practical scenarios, this dataset sig-
nificantly accelerates research in camera optimization and image
enhancement. Next, we explain the implementation of camera pa-
rameter estimation.
4 Parameter Estimation
Based on the Cam-10k, we propose the parameter estimation frame-
work that can be regarded as the implementation part of Cam-
Bench. It firstly extracts brightness and exposure features from
images, then integrates them with three core camera parameters
(ISO, F and A) through a feature fusion module. This process yields
an intermediate metric, the Exposure Brightness Number (EBN),
which enables accurate parameter prediction. The whole architec-
ture comprises: an improved Retinex decomposition module that
separates images into reflectance (content-preserving) and illumi-
nation (brightness-encoding) maps using multi-scale decoupling
and cross/self-attention mechanisms; a camera optical parameter
fusion module that normalizes and nonlinearly processes ISO, F
and A into a robust feature vector 𝑧, employing dropout for general-
ization; camera parameters are optimally predicted by minimizing
the Mean Squared Error (MSE) between the Exposure Brightness
Number (EBN) and the normalized feature vector 𝑧.
4.1 Network Architecture
We firstly introduce the architecture of the camera parameter esti-
mation network. It consists of two core modules include Retinex
decomposition module and feature fusion module. The Retinex
decomposition module can decompose the input image into a re-
flectance map and an illumination map. Through multi-scale fea-
ture decoupling techniques, such maps retain semantic features
and illumination information. The reflectance component preserves
the material and texture features of the scene, while the illumina-
tion component encodes the brightness distribution features. The
feature fusion module integrates prior camera parameters (ISO sen-
sitivity, aperture F-number, and shutter speed) for fused feature
vector generation, which supervise network training.

The two key steps are the training phase and the testing phase.
The main difference between the two is that the training phase in-
troduces the feature fusion module to constrain the training process.
During the training phase, a convolutional neural network (CNN)
is first used to extract features from the illumination map processed
by the Retinex decomposition module, thereby accurately obtaining
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Figure 3: The pipeline of Cam-Bench for camera parameter estimation.

brightness and exposure features. Subsequently, through a fusion
operation, the brightness and exposure features are combined to
generate the Exposure Brightness Number (EBN).

To optimize model performance, feature separation regulariza-
tion is introduced to ensure the independence and robustness of
brightness and exposure features. During training, the model opti-
mizes feature extraction by aligning the EBN with the fused camera
optical features using mean squared error loss. It ensures input
images with the same camera parameters produce a consistent
EBN. The relationship between EBN and camera parameters can
be formulated as:

𝐸𝐵𝑁 (𝑓 (𝑥,𝑦)) = 𝐸 (𝐼𝑆𝑂 (𝑓 (𝑥,𝑦)), 𝐴(𝑓 (𝑥,𝑦)), 𝐹 (𝑓 (𝑥,𝑦))), (1)

where 𝐸𝐵𝑁 (·) denotes the EBN of the image 𝑓 (𝑥,𝑦), 𝑥 and 𝑦 are
coordinates in the image, 𝐼𝑆𝑂 (𝑓 (𝑥,𝑦)) represents the sensor sensi-
tivity, 𝐴(𝑓 (𝑥,𝑦)) indicates the shutter speed, and 𝐹 (𝑓 (𝑥,𝑦)) stands
for the aperture. The function 𝐸 describes the nonlinear relationship
among these four parameters. Based on the formulation, camera
parameters can be accurately predicted. It not only achieves a pre-
cise correlation between the physical camera parameters and the
image brightness characteristics but also lays a solid foundation for
downstream tasks. The specific workflow of the estimation network
is shown in Figure 3. In following parts, we introduce details of
mentioned modules.
4.2 Retinex Decomposition Module
Even two images are captured with same camera parameters, pixel-
level differences can still cause discrepancies between the exposure
brightness index and the actual image visualization, impacting the
accuracy of parameter estimation. To address the issue, we employ
a Retinex decomposition module based on the Retinex theory [24].
It can be formulated as:

𝐼 (𝑥,𝑦) = 𝑅(𝑥,𝑦) · 𝐿(𝑥,𝑦), (2)

where 𝑅(𝑥,𝑦) is the reflectance map (content image), 𝐿(𝑥,𝑦) is
the illumination map (brightness image), and operation · denotes
element-wise multiplication. The decomposition is to decouple
reflectance and illumination maps from the input image.

For decoupling, we firstly encode latent features from the input
image. Then, such features are decomposed using cross-attention
and self-attention mechanisms to generate a reflectance map rich in
content details and an illumination map containing only brightness
information [10], as shown in Figure 4. Specifically, we estimate
the initial reflectance and illumination maps according to [5], that
can be formulated as:

𝐿̃(𝑥) = max
𝑐∈[0, 𝐶 )

𝐹𝑐 (𝑥), 𝑅̃(𝑥) = 𝐹 (𝑥)/(𝐿̃(𝑥) + 𝜏), (3)
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Figure 4: Schematic diagram of the retinex decomposition
module for illumination and content decoupling.
where 𝜏 is a small constant to avoid division by zero, 𝑥 denotes the
pixel position in the image, 𝐶 represents the channel set and 𝑐 is
channel index, 𝐹𝑐 (𝑥) is the feature value at 𝑥 for the 𝑐-th channel
in the feature map output by the encoder, 𝐿̃(𝑥) is the initial esti-
mated illumination map, which takes the maximum value of 𝐹𝑐 (𝑥)
across all channels, 𝐹 (𝑥) is the spatial feature vector, containing
information from 𝐶; 𝑅̃(𝑥) is the initial estimated reflectance map.

To refine the estimated reflectance and illumination maps, two
separate branches are employed. Convolutional blocks are used
to extract embedded features, denoted as 𝐿′ = Convs(𝐿̃) and 𝑅′ =
Convs(𝑅̃). Then, a cross-attention (CA) module [8] is utilized to
enhance the content information in the reflectance map under the
guidance of the illumination map, resulting in 𝑅′′ = CA(𝑅′, 𝐿′).
Additionally, a self-attention (SA) module [20] is applied to further
extract content information from the illumination map, denoted as
𝐿′′ = SA(𝐿′), which is then supplemented into the reflectance map.
The final outputs of the content map 𝑅 and the illumination map 𝐿
can be achieved:

𝑅 = Convs(𝑅′′ + 𝐿′′), 𝐿 = Convs(𝐿′ − 𝐿′′) . (4)

The decomposition is performed in the latent space, which can
more effectively separate the image content under complex illumi-
nation conditions. The generated reflectance map is rich in content
details, while the illumination map contains only brightness infor-
mation that is unaffected by detailed content. Subsequent training
utilizes decoupled illumination maps in conjunction with camera
parameters to facilitate further learning.
4.3 Feature Fusion Module
Based on the decoupled illumination map, we propose a feature
fusion module to process camera parameters of input images. It
generates feature vectors based on the network and indirectly out-
put camera parameters. The purpose is to regulate EBN values,
ensuring the network produces consistent camera parameters for
different images with various exposure conditions. The module
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employs nonlinear processing and normalization to address the
differences in magnitude and nonlinear distributions of camera
parameters, while also utilizing a random dropout mechanism to
prevent overfitting and ensure the robustness and generalization
capability of the model.
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Firstly, recorded camera parameters of the image are taken as
inputs. Due to the significant differences in magnitude and the
nonlinear distributions of these parameters, we initially process
them through a nonlinear equalization layer [12]. Let 𝑥 represents
the value of the camera parameter. Within the nonlinear equal-
ization layer, multiple nonlinear mapping functions are applied to
each camera parameter, including 1

𝑥 ,
√
𝑥 , 𝑥−1/2, 𝑥1/4, 𝑥−1/4, log(𝑥),

sin(log(𝑥)), cos(log(𝑥)), sin(𝑐 · 𝑥), cos(𝑐 · 𝑥), and 𝑐 controls the
frequency of the sinusoidal functions. These functions process the
input camera parameters through various nonlinear transforma-
tions to accommodate different data distributions, introduce nonlin-
ear features, enhance feature diversity, and reduce the differences
among parameters through normalization, thereby providing richer
and more stable information for subsequent model training. We em-
pirically chose three different values, and the results are normalized
to the range [0, 1] to compensate for the differences in magnitude
among the parameters. To mitigate overfitting caused by the dif-
ferences in parameter magnitudes and insufficient training data,
we implement random dropout on the equalized feature vectors of
each optical parameter during training. It is randomly discarding
certain parameter feature vectors with a certain probability (e.g.,
70%). Finally, the equalized feature vectors output by the nonlinear
equalization layer are fed into a fully connected layer to generate
the optical parameter feature vector 𝑧. The specific workflow is
shown in Figure 5. Combined with the mentioned EBN, camera
parameters can be estimated.
4.4 Loss Function
For parameter estimation network training, we employ the Mean
Squared Error (MSE) as the primary loss function, which aims to
bring the model’s predictions to align ground-truth. It penalizes the
deviations between the predicted and ground-truth values, thereby
guiding the model to gradually optimize its predictions. The MSE
loss can be formulated as:

𝐿MSE =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (5)

where 𝑦𝑖 is the true exposure brightness indicator, 𝑦𝑖 is the model
predicted value, 𝑁 is the number of samples in the current batch.
The loss is used to guide the model to align ground-true values.

Using MSE alone may lead to overfitting on certain samples
and inconsistent performance on samples with similar or identical
features. In the training data, there may exist cases where different
images have identical camera parameters. Although these images
have different content, their predicted target brightness values
should be the same from the perspective of camera parameters.
The consistency loss function aims to constrain the consistency of
model outputs among samples with identical camera parameters. It
can be formulated as:

𝐿Consistency =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑏 (𝑦𝑖 , 𝑦 𝑗 ) · ∥𝑦𝑖 − 𝑦 𝑗 ∥2, (6)

where 𝑏 (·) is a binary function, 𝑏 (𝑦𝑖 , 𝑦 𝑗 ) = 1 if 𝑦𝑖 ≈ 𝑦 𝑗 (|𝑦𝑖 − 𝑦 𝑗 | <
𝑚𝑖𝑛(𝑦𝑖 , 𝑦 𝑗 ) · 5%), otherwise 𝑏 (𝑦𝑖 , 𝑦 𝑗 ) = 0, 𝑦𝑖 and 𝑦 𝑗 are predicted
outputs of the model, and 𝑁 is the number of sample pairs that
meet the condition. The consistency loss keeps the deviation of the
model’s output within 10% of the ground-truth values when the
input parameters are exactly the same.

There may be subtle differences in parameters of different images
(for instance, ISO 400 and 500 share similar visualization). Although
such differences are not significant, they should be represented and
learned in a physical perspective. We utilize the contrastive loss
function to enhance the model’s perceptual capability for such
differences. It is represented as:

𝐿Contrastive =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑏′ (𝑦𝑖 , 𝑦 𝑗 ) ·max(1 − |𝑦𝑖 − 𝑦 𝑗 |, 0), (7)

where 𝑏′ (·) is a binary function, 𝑏′ (𝑦𝑖 , 𝑦 𝑗 ) = 1 if 1(𝑦𝑖 ≠ 𝑦 𝑗 ), oth-
erwise 𝑏′ (𝑦𝑖 , 𝑦 𝑗 ) = 0,

��𝑦𝑖 − 𝑦 𝑗
�� represents the absolute difference

of the model’s predicted values. The loss function is to enable the
model to distinguish samples corresponding to different parameters
while avoiding the predicted values from being too similar. Finally,
we achieve the loss function based on the mentioned three items:

𝐿Total = 𝐿MSE + 𝛼𝐿Consistency + 𝛽𝐿Contrastive . (8)

where 𝛼 and 𝛽 are hyperparameters controlling the weights of
the consistency loss and contrastive loss, respectively. Combined
the three loss functions, the parameter estimation network can
better capture the complex characteristics for exposure learning
and output more accurate and stable camera parameters. It can fit
the true exposure brightness values while improve the rationality
and discriminative ability of predictions under specific constraints.
Experiments will demonstrate advantages of Cam-Bench.

5 Experiments
To evaluate the performance of Cam-Bench, we build a series of
camera parameter prediction tests and report their performance in
downstream tasks. The experimental environment equipped with
an Intel i9 3.0GHz CPU and NVIDIA 3090 GPU, using PyCharm and
PyTorch for network training. We firstly evaluate the accuracy of
Cam-Bench for camera parameter estimation. Then, we report its
performance in some related downstream tasks, including illumi-
nation transfer, lighting enhancement, exposure-based IQA (image
quality assessment), and auto-parameter recommendation. Experi-
mental results show that our method can significantly enhance the
modeling and processing capabilities for illumination.
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Table 1: Camera parameter estimation accuracy of Cam-
Bench for different test cases.

Known Parameters Predicted Parameters Accuracy

ISO A F ISO A F (%)

✓ ✓ ✓ 84.6
✓ ✓ ✓ 81.3
✓ ✓ ✓ 82.8
✓ ✓ ✓ 87.9

✓ ✓ ✓ 75.8

Table 2: Qualitative results on mixed test dataset by different
lighting enhancement methods.

Methods PSNR ↑ SSIM ↑ BRISQUE ↓ Cam-IQA ↑

ZeroDCE [6] 17.41 0.6792 0.4929 0.6487
EnlightenGan [11] 18.81 0.6777 0.5474 0.6011
Uretinex-net [24] 20.46 0.7226 0.6825 0.5921
HVI [26] 18.93 0.7351 0.4377 0.6513
ZeroDCE + CamBench 21.66 0.7905 0.3859 0.7371

5.1 Evaluation for Parameter Estimation
The most straightforward validation of the proposed method is
to verify its accuracy in camera parameter estimation. We con-
duct a comprehensive and rigorous validation of Cam-Bench, en-
compassing multiple scenarios of optical parameter prediction. It
should be noticed that while our network accounts for the impact
of parameter variations, simultaneously estimating all three cam-
era parameters remains challenging. According to camera imaging
principles, theoretically similar pixel-level results can be obtained
through fine-tuning such parameters. Fortunately, if we fix cer-
tain camera parameters and estimate the remaining ones based on
the input, such ambiguity can be effectively constrained. It mir-
rors the principle of using priority modes (e.g., aperture-priority or
shutter-priority) in conventional photography.

Based on these considerations, we examine the following test
cases: ISO sensitivity prediction with known shutter speed and
aperture values; shutter speed prediction with known ISO sensitiv-
ity and aperture values; aperture value prediction with known ISO
sensitivity and shutter speed; simultaneous prediction of both shut-
ter speed and aperture value given only ISO sensitivity. These test
scenarios cover common parameter combinations in photographic
practice, designed to validate the model’s predictive capability and
accuracy under varying conditions, given the complexity and diver-
sity of camera parameters, we consider a prediction to be successful
if the predicted value is within 10% fluctuation of the ground-truth
value. Through these evaluations, we gain deeper insights into the
model’s performance in practical applications, facilitating further
optimization. The detailed results are presented in Table 1.
5.2 Applications
Illumination Transfer. Retinex decomposition implemented by
Cam-Bench decouples the illumination map that can represent the
illumination information of input image. It solely captures the light-
ing conditions of the scene and is useful for illumination-based
downstream tasks. With reference to color transfer [18], we pro-
pose an illumination map-based lighting transfer application. It

Source Maps Reference Transferred Result

Figure 6: Instances of illumination transfer. Illumination
information can be mapped from reference images to source
ones with similar content.

Source Source Illumination Map Reference Reference Illumination Map Transferred Result Transferred Illumination Map

Figure 7: Instances of illumination transfer. Illumination
information can be mapped from reference illumination
maps to source ones without similar content.
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Figure 8: Cam-Bench for lighting enhancement. Estimated
camera parameters can be used to drive an auto-model selec-
tion for images with various exposure information.

can transfer illumination information from the reference image to
the source image, regardless of whether their content is similar. In
Figure 6, we show some instances of illumination transfer between
images with similar content. Illumination maps of reference images
are synthesized with source contents to generate transferred results.
In Figure 7, we show some instances of illumination transfer be-
tween images without similar content. Illumination maps of source
images are edited according to the reference. Then, the illumination
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Figure 9: Comparisons of different lighting enhancement methods. (a) original input; (b) ZeroDCE [6] with Cam-Bench; (c)
ZeroDCE [6]; (d) Enlightengan [11]; (e) Uretinex-net [24]; (f) HVI [26]; (g-l) RGB histograms corresponding to (a-e).
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Table 3: Qualitative results of exposure-based IQA by differ-
ent methods on indoor images. ISO< 400 means underex-
posure; ISO∈ [800, 1200] means normal exposure; ISO> 3200
means overexposure.

ISO Level PSNR ↑ SSIM ↑ BRISQUE ↓ Cam-IQA ↑
< 400 9.51 0.4648 0.6530 0.4691
400 ∼ 800 10.94 0.6113 0.7452 0.6971
800 ∼ 1200 22.46 0.7962 0.2164 0.8255
1200 ∼ 1600 21.44 0.8346 0.2469 0.8043
1600 ∼ 3200 13.77 0.6402 0.6544 0.6716
> 3200 11.87 0.5615 0.7046 0.5394

transfer can be implemented. It optimizes the brightness and con-
trast of the image while preserving the naturalness and authenticity
of the content, thus achieving high-quality image enhancement for
complex lighting environments.
Lighting Enhancement. Implementing a lighting enhancement
model based on estimated camera parameter naturally serves as
a downstream application, when the exposure information of an
image can be explicitly represented. The advantage lies in the fact
that camera parameters can directly represent exposure informa-
tion and automatically link to a corresponding pre-trained lighting
enhancement model, as shown in Figure 8. It is crucial for most
illumination optimization methods [6, 10, 11, 24], as their perfor-
mance is inherently constrained by the training data distribution.
Under a fixed parameter configuration, such methods can typically
handle only a single type of exposure adjustment task. In Figure 9,
we compare different lighting enhancement methods and show
enhanced results with histograms. Even integrating Cam-Bench
with earlier solution [6], superior results can still be achieved on
the test dataset with overexposed and underexposed images. In
Table 2, quantitative results provide reliable empirical evidence.
Exposure-based IQA. From a photographic perspective, the char-
acterization of image exposure quality can be directly mapped to a
set of camera parameters. For instance, by fixing the shutter speed,
and aperture F-number, ISO sensitivity estimation can serve as
a direct quantitative descriptor of the image’s exposure quality.
Therefore, we propose another downstream application of Cam-
Bench, which is the exposure-based IQA (Cam-IQA). As mentioned
before, generated EBN is used to estimate camera parameters. We
utilize the EBN to output scores, which directly corresponds the
ISO sensitivity (other parameters are fixed). In Table 3, quantita-
tive results for images with different exposure levels are reported.
Using ISO: 800 ∼ 1200 as the baseline for normal exposure (in-
door scenes typically exhibit darker exposures that require a little
higher ISO values), scores of Cam-IQA can accurately character-
ize the progressive impact of overexposure and underexposure on
image quality. Under normal exposure conditions as the baseline,
Cam-IQA exhibits an overall linear variation when increasing or
decreasing the ISO, statistically demonstrating a precise reflection
of exposure quality changes based on ISO adjustment. In contrast,
both SSIM and BRISQUE exhibit score fluctuations when ISO values
are smoothly changed.
Auto-parameter Recommendation. The exposure assessment ca-
pability of Cam-Bench inherently supports the inverse optimization

F:4.5 A:1/125 ISO:3200

F:8.0 A:1/125 ISO:400

F:4.5

ISO:500

F:4.5 A:1/125 ISO:400

F:4.5 A:1/125 ISO:500

Figure 10: Instances of auto-parameter recommendation for
photo capturing. Exposure quality can be optimized.
of camera parameters for a given image, thereby enabling the devel-
opment of an auto-parameter recommendation framework. Inspired
by the parameter priority modes (e.g., aperture-priority, shutter-
priority) implemented in conventional camera systems, Cam-Bench
provides equivalent programmable control capabilities through its
exposure optimization framework. It can provide parameter mod-
ification recommendation when an inexperienced user manually
adjusts camera parameters (non-auto mode) for photography. In
Figure 10, two instances are shown. Auto-parameters are provided
for exposure correction.

Limitations. Collected Cam-10K focuses on indoor scenes with
various illumination conditions. In terms of generalization capa-
bility, the parameter prediction accuracy exhibits instability when
applied to outdoor scenarios. From a generalizability perspective,
Cam-Bench exhibits performance degradation in parameter predic-
tion for outdoor scenarios. In addition, more accurate results can
in fact be obtained by leveraging pixel-level random noise analysis
and foreground-background blur metrics. Cam-Bench lacks ded-
icated processing modules for these features, which necessitates
resolution in the future work.

6 Conclusion
In this paper, we propose a new benchmark for camera param-
eter estimation from image directly. It can be regarded as a pio-
neering work in this topic. The main contributions consist of two
components: a specifically collected image dataset Cam-10K with
various exposure conditions and ground truth (GT) annotations of
camera parameters; a camera parameter estimation network for
image-based parameter prediction directly. Cam-10K provides a
comprehensive collection of indoor images under complex lighting
conditions, enabling high-precision camera parameter parsing. The
proposed estimation network utilizes a Retinex decomposition mod-
ule to split illumination and content maps. Then, it uses a feature
fusion module with a EBN-based mechanism to generate camera
parameters. Benefited from the design, Cam-Bench can accurately
estimate camera parameters while addressing both the fluctuations
induced by minor parameter variations and the coupling effects
between parameters. Furthermore, it provide a camera parameter-
based solution for illumination analysis. A series of downstream
tasks can achieve performance improvements with the assistance
of Cam-Bench. Experiments demonstrate that it takes significant
research value and warrants further investigation.
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