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Abstract. Polygonal mesh reconstruction of a raw point cloud is a valu-
able topic in the field of computer graphics and 3D vision. Especially to
3D architectural models, polygonal mesh provides concise expressions
for fundamental geometric structures while effectively reducing data vol-
ume. However, there are some limitations of traditional reconstruction
methods: normal vector dependency, noisy points and defective parts
sensitivity, and internal geometric structure lost, which reduce the prac-
ticality in real scene. In this paper, we propose a robust and efficient
polygonal mesh reconstruction method to address the issues in architec-
tural point cloud reconstruction task. It is an iterative adaptation pro-
cess to detect planar shapes from scattered points. The initial structural
polygonal mesh can be established in the constructed convex polyhedral
space without assistance of normal vectors. Then, we develop an effi-
cient polygon-based winding number strategy to orient polygonal mesh
with global consistency. The significant advantage of our method is to
provide a structural reconstruction for architectural point clouds and
avoid point-based normal vector analysis. It effectively improves the ro-
bustness to noisy points and defective parts. More geometric details can
be preserved in the reconstructed polygonal mesh. Experimental results
show that our method can reconstruct concise, oriented and faithfully
polygonal mesh that are better than results of state-of-the-art methods.

Keywords: Polygonal mesh · Polygon-based winding number strategy
· Structural reconstruction

1 Introduction

As an efficient representation of a three-dimensional object, a polygonal mesh
has significant advantages in the shape reconstruction task. It carries struc-
tured face information with geometric consistency while significantly reducing
data volume. Especially for architectural point cloud representation, a polygo-
nal mesh provides accurate and concise geometric structures that are useful for
visualization and feature analysis in urban scenes.

The mainstream reconstruction technical routes include two-step mesh recon-
struction and low-poly meshing directly. For the first route, the related methods
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attempt to reconstruct complex mesh from point cloud to keep more geometric
details [3, 17, 19, 20, 42, 45]. Then, they employ simplification strategies [25, 39]
to achieve concise meshes for data compression. However, some important geo-
metric features are broken by the simplification to a certain extent. In addition,
the performance of the reconstruction is inevitably reduced for incomplete point
clouds. For the second route, the methods [1,24,27,35] decompose the 3D space
for the incomplete point cloud and directly establish a polygonal mesh to pro-
vide a concise structural representation. But they are sensitive to outliers of raw
point cloud and lose some accurate geometric features.

In this paper, we propose a robust polygonal mesh reconstruction method to
implement low-poly meshing for architectural point clouds. It includes three core
components. Firstly, we detect polygonal planes from the raw point cloud, which
is inspired by assembling-based surface reconstruction [35]. Secondly, we design
an adaptive spatial partitioning scheme that iteratively segments the internal
space represented by achieved planes. It is used to control the scope of planar
intersection. A set of convex polyhedrons is constructed to fill the internal space.
With the polygon-based winding numbers optimization, the polygonal mesh is
constructed from the convex polyhedrons, which captures concise representa-
tion and more geometric details from noisy and unorganized point clouds. The
contributions can be summarized as:

– We present a polygonal plane detection method that clusters points into
regular planes without normal vector analysis. It is robust to outliers and
noisy points while providing a structural geometric representation for the
incomplete and unorganized point cloud.

– We design an adaptive spatial partition to establish a set of convex poly-
hedrons, which are used to represent the internal space of the architec-
tural point cloud. A large number of plane-based intersection calculations
are avoided which improve efficiency and enhance the accuracy of internal
geometric details.

– We propose a polygon-based winding numbers optimization to achieve the
final polygonal mesh. The optimization strategy fully inherits the advantages
of the winding number for surface orientation. At the same time, the strategy
considers the consistency constraint with the original input point cloud. It
further enhances the quality of the reconstructed polygonal mesh.

2 Related Work

Related methods for polygonal mesh reconstruction can be concluded into three
parts: mesh reconstruction, mesh simplification, and low-polygon meshing.

2.1 Mesh Reconstruction

Basically, the mesh reconstruction can be divided into two categories: explicit
surface reconstruction and implicit one. The explicit surface reconstruction is
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to establish continuous representations for discrete forms by establishing ex-
plicit local neighborhood. Representative solutions include ball pivoting [2], scale
space [10], Delaunay triangulation [8], and voxel-based reconstruction [41]. Fol-
lowing the development of deep learning, many researchers attempt to learn the
prior knowledge from modeling experiences to guide 3D reconstruction [7, 15,
16, 18, 43, 48]. Compared to the explicit surface reconstruction, the implicit one
solves an implicit function, which defines the surface as the zero-level set of the
function. Some representative methods include marching cubes [29,36], Poisson
surface reconstruction [17, 19–21], and radial basis function [5, 34, 46]. They are
more flexible and can handle topologically complex shapes.

2.2 Mesh Simplification

To preserve more geometric features, reconstructed meshes usually carry more
vertices and faces which increase the computational cost of mesh-based rendering
and analyzing. Therefore, mesh simplification schemes are proposed to compress
the 3D model. Such schemes include geometric-based approximation [4, 9, 25],
Delaunay-based remeshing [38, 49], structural simplification [14, 39], hierarchy
strategy [26], and intrinsic analysis [28, 32]. These schemes can approximate a
polygonal mesh or reconnect a simplified mesh from the original complex one
while keeping some important geometric features. However, these methods re-
quire high-precision mesh input, which makes the processing flow cumbersome
and unstable.

2.3 Low-Poly Meshing

To address the limitation of mesh simplification, low-poly meshing is proposed
to directly establish concise polygonal meshes based on raw inputs. Most repre-
sentative methods utilize the idea of structural reconstruction to implement the
meshing process, including building blocks [27,33], structure-preserving [24], sur-
face elements [22] and plane hypothesis [1,11,12,35]. These methods extract ba-
sic representation elements from raw point clouds to construct polygonal meshes
while approximating objects from incomplete geometric structures. However,
there are limited by normal dependency and lower computational efficiency.

3 Methodology

Overview. The proposed WindPoly can be regarded as a low-poly remeshing
scheme. It can be concluded as three parts: polygonal plane detection, adap-
tive spatial partitioning for convex polyhedron generation, and polygon-based
winding numbers optimization. The polygonal plane detection is used to detect
primitive planes from the raw point cloud in order to achieve initial structure
information. Then, the convex polyhedron generation implements internal struc-
ture fitting by using adaptive spatial partitioning. This results in a set of coarse
polyhedral elements without correct directions. To achieve the final polygonal
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Fig. 1: Pipeline of WindPoly. (a) raw point cloud, (b) detected polygonal planes, (c)
adaptive spatial partition, (d) output by polygon-based winding numbers optimization.

mesh, the polygon-based winding numbers optimization is implemented to orient
polyhedral elements with global consistency. Some ambiguous geometric struc-
tures are improved during the orientation and consequently obtain more precise
internal geometric details. The pipeline is shown in Fig. 1. In the following parts,
we explain the implementation details.

3.1 Polygonal Plane Detection

The scanned raw point cloud inevitably carries noisy points and outliers with
random distributions. Therefore, we employ a pre-processing step to increase
the robustness for raw point clouds. Firstly, we simplify the raw point cloud
by Poisson resampling. It reduces the scale of the point cloud and optimizes its
densities to be uniform. Then, we remove the outliers based on an automatic
neighbor analysis program that is similar to the solution in [31]. Let pi represent
a point in a point cloud P , N(pi) is the neighbor set of pi which is achieved by
KNN. The judgement of outlier set {po} can be formulated as

{po} = {pi|pi ̸∈ N(pj), pj ∈ N(pi), pi, pj ∈ P}, (1)

where pj is the neighbor point of pi, and pi is judged as an outlier when it does
not belong to neighbor sets of its neighbors. The formulation is established based
on the manifold compactness.

Based on the pre-processed point cloud, we implement polygonal plane de-
tection for raw point clouds. The usual approach is to estimate the normal vector
of each points and cluster them to fit related plane [37]. It is a normal vector de-
pendency scheme with limited robustness. To implement a scheme with normal
vector independence, we present a practical solution based on existing methods.
We firstly extract candidate planes by fitting planar primitives (FPP) [50]. It
extracts basic planes based on primitive configuration achieved by

U(x) = ωfUf (x) + ωsUs(x) + ωcUc(x), (2)

where Uf , Us, and Uc represent fidelity, simplicity and completeness energies
with related weights ωf , ωs, and ωc, which describe the clustering property in
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Algorithm 1: Polygonal Plane Detection
Input : Pre-processed point cloud P
Output: Polygonal plane set {F}
1 Initialization: {F}c ← FPP(P )
2 foreach plane Fi ∈ {F}c do
3 foreach plane Fj ∈ {F}c, j ̸= i do
4 if PRR(Fi, Fj) then
5 Combine Fi into Fj

6 Update {F}c
7 end
8 end
9 end

10 {F} ← {F}c

local neighborhoods. Then, we check the planes and combine them according to
the plane refinement regulation (PRR) mentioned in [35]. It can be represented
as

acos ⟨ni, nj⟩ < θthe,
Nt = min(|Fi|, |Fj |)/5,

(3)

where ni and nj are normal vectors of planes Fi and Fj , |Fi| and |Fj | are
points belonging to the two planes, θthe (10◦ by default) and Nt are control pa-
rameters. Once the common point number between two planes is larger than Nt

and simultaneously satisfies the first condition in Eq. (3), the plane-based com-
bination is triggered, the two related planes are merged. The required planes are
achieved until all candidate planes are checked and combined. The implementa-
tion of the method can be concluded in Algorithm 1.

3.2 Adaptive Spatial Partition

Based on detected polygonal planes, we propose an adaptive spatial partition
to generate convex polyhedrons for internal structure perception. It inherits the
idea of iteratively generating polyhedrons in the convex polyhedral space while
using a concise strategy to fit the internal structure without normal vector as-
sistance. The method includes two basic components: convex polyhedral space
construction and iterative convex polyhedron searching.

The convex polyhedral space is the convex hull of the object, which is con-
structed by the external planes selected from the primitive elements. The exter-
nal plane is detected based on the regulation that is all other primitive elements
should be located in the same side of the plane. An instance is shown in Fig. 2. It
should be noticed that some outliers and inaccurate planes take influences for ex-
ternal plane judgement. To improve the robustness, we implement an additional
check for the intersection of two planes. Let plane Fi to be a cross plane of F0, we
compute the α shape to achieve the boundary point set {p}0b of F0. The α shape
represents a point-based region that describes the enveloping shape of associated
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(a) (b) (c) (d)

Fig. 2: External plane detection in 2D vision. Gray dotted lines (a) represent the raw
point cloud. Red lines represent the external planes (b), blue lines are the other planes
located in same side of the external planes (c). Finally, the convex polyhedral space
represented by external planes is achieved (d).
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Fig. 3: An instance of adaptive spatial partition in 2D vision. In the initial step,
intersection numbers of related planes F1 ∼ F4 are 1, 2, 2, 2. After partition according to
the regulation, the convex polyhedral space is divided into a set of convex polyhedrons.

points. We check points in {p}0b and delete ones that satisfy dist(p0j , Fi) < σ,
where dist is the distance between p0j and Fi. If all the remaining boundary
points of {p}0b are located on one side of Fi, then the entire plane F0 is judged to
be on the side of Fi. The additional check improves the practicality of external
plane detection.

In the convex polyhedral space, we establish convex polyhedrons to perceive
the internal structure. PolyFit [35] has developed a solution that implements
exhaustive partition to generate convex polyhedrons. However, it requires re-
dundant intersection calculations for all planes with poor robustness. To solve
the problem, we employ the adaptive spatial partition to segment the convex
polyhedral space. Each internal plane is expanded and intersects with its spatial
sub-region. Benefited from the adaptive spatial partition, the efficiency of con-
vex polyhedron generation can be significantly improved. The adaptive spatial
partition can be concluded as an iterative scheme.

As an initial step, the internal planes are collected into the set {F}int. Inter-
section numbers {num}int between each internal plane and other internal ones
are computed and stored at the same time. Then, we select the separating plane
Fi with minimum intersection number of {num}int. According to the Fi, the
original convex polyhedral space represented by external planes are divided into
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Fig. 4: An instance of adaptive spatial partition in 3D vision. According to the separat-
ing plane searching (a)-(d), the 3D structure can be achieved with internal geometric
details (e).

Algorithm 2: Adaptive Spatial Partition
Input : Internal plane set {F}int

Output: Convex polyhedron set {CP}c
1 Initialization
2 {num}int ← intersection numbers of {F}int

3 AdaptiveFun({F}int, {num}int):
4 Search the Fi from {F}int with minimum value from {num}int

5 Cut convex polyhedral space into two sub-spaces
6 if sub-space1,2 has planes then
7 {F}s1,2 ← {F}int

8 AdaptiveFun({F}s1,2, {num}int)
9 end

10 else if then
11 {CP}c ← sub-space1,2
12 end
13 return;

two parts. We iteratively search for separating planes in the corresponding part
and continuously segment the subspaces until all planes are checked. Each con-
vex polyhedral subspace corresponds to a convex polyhedron. Finally, a set of
convex polyhedrons can be constructed. The intersection calculations between
internal planes are controlled in the related subspace. It avoids redundant cal-
culations while improving accuracy. The adaptive spatial partition is concluded
in Algorithm 2.

For the separating plane searching, if there are multiple planes with same
minimum value, we select the one with the largest area. In Fig. 3, we show
an instance for the adaptive spatial partition. The partition process tends to
search the subspaces from the outside to the inside in the convex polyhedral
space (Fig. 4). After that, a coarse structural representation based on a set of
polyhedrons is achieved which has detected the internal regions.
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Fig. 5: An instance of polygon-based winding numbers optimization. According to the
binary labels of related centroids, the polygonal mesh can be extracted from the convex
polyhedron set.

3.3 Polygon-based Winding Numbers

The convex polyhedrons take redundant faces for polygonal mesh representation,
which should be removed for the final polygonal mesh representation. Based on
the generated convex polyhedrons, we introduce the third part that is to employ
winding numbers optimization to determine the orientation of the candidate
faces and decide whether to remove the related polyhedrons. As a mature ori-
entation strategy, winding numbers are widely used in recent works [13, 44],
which optimize a scalar field to define the inside and outside of a closed surface.
Generally, such optimization is processed on redundant points which requires a
huge computation cost. In our framework, we propose a polygon-based wind-
ing number strategy that orients faces directly. Fewer points are used for the
computation that significantly improve the efficiency. It can be represented as

w(q) =

N∑
i=1

ai
(pi − q) · ni

4π ∥pi − q∥3
, (4)

where q is a polyhedron centroid, pi is the center of face Fi of related polyhedron,
ai is the area of Fi, and ni is the face-based normal vector. Then, we complete
the redefinition of parameters for winding numbers. The value of w(q) can be
computed which represents the inside or outside direction. The numerical dis-
tribution of winding numbers corresponds to the global consistency of normal
vectors, which is suitable for orientation.

Let {CP}c represent the convex polyhedron set, we collect candidate faces
{F}cp from {CP}c, which meet the condition A(Fi)α/A(Fi) > Tr, (A(Fi)α is
the α shape area of Fi, A(Fi) is the area of Fi, Tr is the control threshold). Then
we search the outside faces {F}out from candidate faces based on the convex
hull of the model, and assign related normal vectors {N}out to the outside of the
convex hull. A group of faces with normal vectors for winding number computing
has been obtained as initialization (pi ∈ {F}out, ni ∈ {N}out for Eq. (4)). Next,
we define a judgement energy to determine whether a polyhedron should be
removed, which can be represented as

Edir = W ({q}) + V ({q}), (5)
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Fig. 6: Visualization of internal structure reconstructed by WindPoly.

where q represents the polyhedron centroid mentioned in Eq. (4). The purpose of
Eq. (5) is to achieve a set of labels of {q} by minimizing the direction-based en-
ergy Edir. Once the label of the polyhedron centroid is provided, the judgement
of the related convex polyhedron can be processed. The optimization consists
of two terms, W ({q}) and V ({q}). The first term W ({q}) employs the winding
numbers optimization to compute the face-based direction energy. It provides a
geometrically consistent optimization method for determining the optimal ori-
entation combination of polyhedrons, which can be represented as

W ({q}) =
∑

qk∈{q}

w̃(qk), (6)

w̃(qk) =

{
1− w(qk), qk ∈ {q}in
w(qk), qk ∈ {q}out

, (7)

where qk is a polyhedron centroid, qk ∈ {q}, w̃(qk) is used to normalize winding
number w(qk) for optimization, {q}in and {q}out are subsets of {q} with related
binary labels, which determine whether the polyhedron should be retained. Once
the label of qk is decided, the first term of direction energy can be achieved. The
second term is used to check fitting degree between faces and original point cloud,
which assists the determination of direction judgement. It can be computed by

V ({q}) =
∑

Fl∈{qi,qj}

(1−Aα(Fl)/A(Fl)), (8)

where Fl is a common face between the adjacent convex polyhedrons qi and qj ,
Aα(Fl) means the area of α shape of points related to the Fl, A(Fl) is the area of
Fl, and the value of Aα(Fl)/A(Fl) can represent the coverage rate. This energy
term represents the consistency between original point cloud and boundary faces
of convex polyhedrons directly. The optimization is implemented by a max-flow
algorithm that has been used in KSR [1]. The corresponding binary labels of {q}
can be obtained when the direction energy is minimized. An instance is shown
in Fig. 5. In each iteration of the optimization strategy, the orientation of the
candidate faces located at the boundary can be determined. Such faces are used
to calculate Edir that labels the remainder polyhedrons in the next iteration.
More details are described in the supplementary material.

Benefiting from the accurate determined directions for polyhedron set, a
more accurate internal structure (Fig. 6) can be checked and processed by the
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polygon-based winding numbers optimization. Related centroids involved in the
optimization correspond to the number of polyhedrons, which is much less than
the original points. Compared to the traditional winding numbers optimization,
our method significantly improves efficiency.

4 Experiment

We evaluate the performance of WindPoly in the polygonal mesh reconstruction
task. The experimental machine is equipped with Intel i9-13900K, 128GB RAM,
RTX4090, with Windows 10 as the operation system and Visual Studio 2019
as the development platform. The experiments include the following parts: 1.
we introduce the test dataset and explain some selected metrics to prove quan-
titative analysis for the reconstruction; 2. we compare different reconstruction
methods to report and visualize the advantages of WindPoly; 3. we discuss some
potential limitations of WindPoly in practice.

4.1 Dataset & Metrics

The test point clouds are collected from ABC dataset [23], PolyFit dataset [35],
UrbanBIS [47], and BuildingNet [40], which reflect the reconstructed geometric
details of different levels. The ABC dataset includes small-scale workpiece models
with regular point distributions and clear geometric details. The PolyFit and
BuildingNet datasets contain architectural point clouds. The UrbanBIS is a large
scale city scene dataset with real scanned architectural point clouds. Based on
the data scale mentioned in [14], we select 300 models (100 models from ABC
dataset and 200 models from other architectural datasets) with representative
holes or smooth surfaces to evaluate the performance of the reconstruction for
structured representation of geometric information.

The quantitative metrics should be established from two perspectives: geo-
metric consistency and data compression efficiency. The geometric consistency
can be represented by Hausdorff distance and mean distance, which characterizes
the matching degree from points to the polygonal plane. For data compression
efficiency, we directly report the point and face numbers of the reconstructed
polygonal mesh. It should be noticed that the quality of the data compression
should related to the geometric consistency. If the reconstruction result just

Fig. 7: Reconstruction results and color maps of mapping distances by different meth-
ods. (a, b) PolyFit, (c, d) KSR, (e, f) WindPoly.
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Fig. 8: External geometric details representation by different methods. (a) CAD model,
(b) PolyFit, (c) KSR, (d) WindPoly.

Fig. 9: Visualization of reconstructed meshes and related triangulations by IPSR and
WindPoly. (a) IPSR, point = 199.1k, face = 398.1k, (b) IPSR with simplification, point
= 5.0k, face = 9.9k, (C) WindPoly, point = 336, face = 168. WindPoly achieves better
structural planes and sharp features.

contains one point, the better performance of data compression means nothing.
Therefore, we multiple the Hausdorff distance and simplification rate to be a
multiple estimation for fair evaluation.

4.2 Comparisons

Based on the collected dataset and related metrics, we evaluate the performance
of different reconstruction methods, including PolyFit [35], KSR [1], IPSR [17],
LowPoly [14], and R-LowPoly [6]. Such methods cover the current mainstream
solutions. However, the LowPoly and R-LowPoly can not reconstruct mesh from
a raw point cloud directly. We employ a voxel-based Delaunay triangulation
method [30] to achieve an initial mesh at first. The IPSR achieves a high-quality
mesh without data compression. To provide a fair comparison, we employ the
simplification from VCG library to concise the mesh.

To show the performance of internal geometric structure reconstruction, we
compute color maps for reconstructed meshes using different low-poly meshing
methods. Mapping distances from points to related planes are used to generate
colors. The upper layer of the point cloud is peeled off to display the internal
color differences. Such color maps are shown in Fig. 7. Comparing to other low-
poly meshing schemes, the fitting errors of WindPoly in the internal geometric
structure are lower. As mentioned before, WindPoly achieves a balance between
planes with different scales. It keeps more accurate geometric features in re-
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Fig. 10: Visualization of reconstructed meshes by different methods. (a) Initial mesh
by [30], (b) LowPoly, (C) R-LowPoly , (d) WindPoly.

Table 1: Quantitative analysis of different structural reconstruction methods in CAD
models from ABC dataset. The related metrics include Hausdorff distance DisH , mean
distance DisM , average point number pAvg., average face number FAvg., simplification
rate RAvg., and multiple estimation RHAvg. = DisH ×RAvg..

DisH ↓ DisM ↓ pAvg. ↓ FAvg. ↓ RAvg. ↓ RHAvg. ↓

PolyFit [35] 0.118 0.014 277 299 0.017 0.0011
KSR [1] 0.111 0.015 61 123 0.005 0.0005
LowPoly [14] 0.281 0.018 62 114 0.005 0.0011
R-LowPoly [6] 0.267 0.014 246 368 0.009 0.0019
WindPoly 0.061 0.002 273 447 0.024 0.0010

gions with smooth curvature transitions. In Fig. 8, we compare some results by
classical low-poly meshing methods and WindPoly. It is clear that our method
achieves more accurate results with better geometric consistency. Related qual-
itative results are reported in Tables 1 and 2.

To further compare the difference between the two-step reconstruction (mesh
reconstruction with simplification) and WindPoly, we exhibit an independent
comparison between IPSR and WindPoly. The rendering results of reconstructed
meshes are shown in Fig. 9. Benefited from the accurate implicit surface estima-
tion, IPSR achieves more precise geometric details. However, the reconstructed
mesh by IPSR take more points and faces even it has been simplified. Some sharp
features are smoothed. In contrast, the performance of WindPoly for data com-
pression is significantly improved while keeping sharp features. More results are
shown in Fig. 11. As structural methods, LowPoly and R-LowPoly can establish
polygonal models with concise structures. However, both methods rely on the
quality of the initial mesh. For some broken regions as shown in Fig. 10, such
methods cannot automatically repair them and result in noticeable topological
errors. In Tables 1 and 2, more qualitative results of structural reconstruction
methods are reported. WindPoly achieves better results without initial meshes.

For efficiency analysis, we show time cost reports of different methods in
Table 3. KSR is faster but it depends on normal vectors and may lose some
geometric structures like instances in Fig. 11. For complex architectural point
clouds, IPSR takes more computational cost and outputs meshes with redundant
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Fig. 11: Comparisons of different polygonal mesh reconstruction methods.

Table 2: Quantitative analysis of different structural reconstruction methods in build-
ing models from architectural dataset.

DisH ↓ DisM ↓ pAvg. ↓ FAvg. ↓ RAvg. ↓ RHAvg. ↓

PolyFit [35] 5.1652 0.7808 392 433 0.00607 0.0496
KSR [1] 6.7792 0.6845 157 312 0.00362 0.0398
LowPoly [14] 6.6763 0.4863 378 188 0.00471 0.0313
R-LowPoly [6] 6.6121 1.8565 476 1064 0.01181 0.0283
WindPoly 4.5276 0.5159 549 274 0.00560 0.0229

points and faces. LowPoly and R-LowPoly require initial mesh reconstruction. In
contrast, WindPoly achieves more concise representation and better geometric
structure. It improves the performance for polyhedron searching by the spatial
partition strategy which avoids low-contributing planes in convex polyhedron
generation. The polygon-based winding numbers optimization further improves
the computational efficiency. In summary, WindPoly provides a balanced and
effective solution for polygonal mesh reconstruction, as shown in Fig. 12.

Limitations. WindPoly is effective for point clouds with significantly struc-
tural information. However, once such information of the point cloud is not the
main content, the performance of WindPoly is affected to some extent. For some
smaller structures in large-scale point clouds, there is a certain probability of
producing incorrect results, especially when the point density of the structure
is lower. Such smaller structures may be merged into incorrect planes. Some
instances are shown in supplementary materials.
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Fig. 12: More practical instances of polygonal meshes by WindPoly.

Table 3: Time cost reports of different methods in related stages. Initial pre-processing
of PolyFit and WindPoly is polyhedron searching; Initial mesh reconstruction of Low-
Poly and R-LowPoly is voxel-based Delaunay triangulation method [30].

Method PolyFit KSR IPSR LowPoly R-LowPoly WindPoly

Initial Total Initial Total Initial Total Initial Total Initial Total Initial Total

ABC Dataset 5s 10s — 6s — 16s 17s 58s 17s 78s 31s 133s
PolyFit 6s 15s — 9s — 345s 11s 103s 11s 120s 19s 99s
BuildingNet 56s 803s — 7s — 239s 10s 80s 10s 78s 20s 76s
UrbanBIS 330s 1707s — 11s — 1,347s 9s 196s 9s 98s 25s 204s

5 Conclusion

We propose a polygonal mesh reconstruction method WindPoly to reconstruct
a concise 3D representation with accurate structural information for raw point
clouds. Three core parts work together to achieve this goal. The polygonal plane
detection implements the initial processing to extract primitive planes from the
point cloud. Based on the planes, the adaptive spatial partition checks the convex
polyhedral space and generate a set of polyhedrons without orientation. Some
internal geometric structures are preserved. Finally, the polygon-based winding
numbers optimization orients the faces of the polyhedrons and outputs the re-
constructed polygonal mesh. The WindPoly can establish structural information
from raw point clouds without point-based normal vector assistance. It orients
the polygonal mesh with an efficient way while capturing the accurate inter-
nal geometric structures. Experiments show that WindPoly achieves a better
balance between normal vector independence, geometric consistency and data
compression. It can handle CAD models and architectural point clouds, and
output high quality polygonal meshes.



WindPoly 15

Acknowledgements

This work was supported in parts by NSFC (U21B2023, U2001206, 62161146005),
Guangdong Basic and Applied Basic Research Foundation (2023B1515120026,
2023A1515110292), DEGP Innovation Team (2022KCXTD025), Shenzhen Sci-
ence and Technology Program (KQTD20210811090044003, RCJC2020071411443
5012, JCYJ20210324120213036), Development Funds from Shenzhen University
and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ).

References

1. Bauchet, J.P., Lafarge, F.: Kinetic shape reconstruction. ACM Trans. on Graphics.
39(5), 156:1–156:14 (2020)

2. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-
pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph.
5(4), 349–359 (1999)

3. Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H.: Parallel poisson surface recon-
struction. In: International Symposium on Visual Computing. pp. 678–689 (2009)

4. Calderon, S., Boubekeur, T.: Bounding proxies for shape approximation. ACM
Trans. on Graphics (Proc. SIGGRAPH) 36(4), 57:1–57:13 (2017)

5. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial ba-
sis functions. In: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. pp. 67–76 (2001)

6. Chen, Z., Pan, Z., Wu, K., Vouga, E., Gao, X.: Robust low-poly meshing for gen-
eral 3d models. ACM Trans. on Graphics (Proc. SIGGRAPH) 42(4), 119:1–119:20
(2023)

7. Chen, Z., Tagliasacchi, A., Zhang, H.: Bsp-net: Generating compact meshes via
binary space partitioning. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 45–54
(2020)

8. Cohen-Steiner, D., Da, F.: A greedy delaunay-based surface reconstruction algo-
rithm. The Visual Computer 20, 4–16 (2004)

9. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In:
Proc. SIGGRAPH. pp. 905–914 (2004)

10. Digne, J., Morel, J.M., Souzani, C.M., Lartigue, C.: Scale space meshing of raw
data point sets. Comput. Graph. Forum 30(6), 1630–1642 (2011)

11. Fang, H., Lafarge, F.: Connect-and-slice: an hybrid approach for reconstructing 3D
objects. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 13490–13498 (2020)

12. Fang, H., Lafarge, F., Desbrun, M.: Planar shape detection at structural scales. In:
IEEE Conf. Comput. Vis. Pattern Recog. pp. 2965–2973 (2018)

13. Feng, N., Gillespie, M., Keenan, C.: Winding numbers on discrete surfaces. ACM
Trans. on Graphics (Proc. SIGGRAPH) 42(4), 36:1–36:17 (2019)

14. Gao, X., Wu, K., Pan, Z.: Low-poly mesh generation for building models. In: Proc.
SIGGRAPH. pp. 3:1–3:9 (2022)

15. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn:
a network with an edge. ACM Trans. on Graphics (Proc. SIGGRAPH) 38(4), 90:1–
90:12 (2019)

16. Hanocka, R., Metzer, G., Giryes, R., Cohen-Or, D.: Point2mesh: A self-prior for
deformable meshes. arXiv preprint arXiv:2005.11084 (2020)



16 X. He, C. Lv, P. Huang, and H. Huang

17. Hou, F., Wang, C., Wang, W., Qin, H., Qian, C., He, Y.: Iterative poisson sur-
face reconstruction (ipsr) for unoriented points. ACM Trans. on Graphics (Proc.
SIGGRAPH) 41(4), 128:1–128:13 (2022)

18. Huang, J., Chen, H.X., Hu, S.M.: A neural galerkin solver for accurate surface
reconstruction. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 41(6), 229:1–
229:16 (2022)

19. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc.
Eurographics Symp. on Geometry Processing. pp. 61–70 (2006)

20. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. on
Graphics. 32(3), 29:1–29:13 (2013)

21. Kazhdan, M., Chuang, M., Rusinkiewicz, S., Hoppe, H.: Poisson surface reconstruc-
tion with envelope constraints. Comput. Graph. Forum 39(5), 173–182 (2020)

22. Kelly, T., Femiani, J., Wonka, P., Mitra, N.J.: Bigsur: Large-scale structured urban
reconstruction. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 36(6), 204:1–
204:16 (2017)

23. Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa,
M., Zorin, D., Panozzo, D.: Abc: A big cad model dataset for geometric deep
learning. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 9601–9611 (June 2019)

24. Lafarge, F., Alliez, P.: Surface reconstruction through point set structuring. Com-
put. Graph. Forum 32(2), 225–234 (2013)

25. Lescoat, T., Liu, H.T.D., Thiery, J.M., Jacobson, A., Boubekeur, T., Ovsjanikov,
M.: Spectral mesh simplification. Comput. Graph. Forum 39(2), 315–324 (2020)

26. Li, M., Nan, L.: Feature-preserving 3d mesh simplification for urban buildings.
ISPRS J. Photogrammetry and Remote Sensing 173, 135–150 (2021)

27. Li, M., Wonka, P., Nan, L.: Manhattan-world urban reconstruction from point
clouds. In: Eur. Conf. Comput. Vis. pp. 54–69 (2016)

28. Liu, H.T.D., Gillespie, M., Chislett, B., Sharp, N., Jacobson, A., Crane, K.: Sur-
face simplification using intrinsic error metrics. ACM Trans. on Graphics (Proc.
SIGGRAPH) 42(4), 118:1–118:17 (2023)

29. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: Seminal graphics: pioneering efforts that shaped the field.
pp. 347–353 (1998)

30. Lv, C., Lin, W., Zhao, B.: Voxel structure-based mesh reconstruction from a 3d
point cloud. IEEE Trans. on Multimedia 24, 1815–1829 (2021)

31. Lv, C., Lin, W., Zhao, B.: Intrinsic and isotropic resampling for 3d point clouds.
IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3274–3291 (2022)

32. Lv, C., Lin, W., Zheng, J.: Adaptively isotropic remeshing based on curvature
smoothed field. IEEE Trans. Vis. Comput. Graph. pp. 1–15 (2022)

33. Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., Mitra, N.J.: Abstraction of
man-made shapes. ACM Trans. on Graphics. 28(5), 1–10 (2009)

34. Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolat-
ing implicit surfaces from scattered surface data using compactly supported radial
basis functions. In: Proc. SIGGRAPH (2005)

35. Nan, L., Wonka, P.: Polyfit: Polygonal surface reconstruction from point clouds.
In: Int. Conf. Comput. Vis. pp. 2353–2361 (2017)

36. Nielson, G.M.: On marching cubes. IEEE Trans. Vis. Comput. Graph. 9(3), 283–
297 (2003)

37. Rabbani, T., Van Den Heuvel, F., Vosselmann, G.: Segmentation of point clouds us-
ing smoothness constraint. ISPRS J. Photogrammetry and Remote Sensing 36(5),
248–253 (2006)



WindPoly 17

38. Rakotosaona, M.J., Aigerman, N., Mitra, N.J., Ovsjanikov, M., Guerrero, P.: Dif-
ferentiable surface triangulation. ACM Trans. on Graphics (Proc. SIGGRAPH
Asia) 40(6), 267:1–267:13 (2021)

39. Salinas, D., Lafarge, F., Alliez, P.: Structure-aware mesh decimation. Comput.
Graph. Forum 34(6), 211–227 (2015)

40. Selvaraju, P., Nabail, M., Loizou, M., Maslioukova, M., Averkiou, M., Andreou,
A., Chaudhuri, S., Kalogerakis, E.: Buildingnet: Learning to label 3d buildings. In:
Int. Conf. Comput. Vis. pp. 10377–10387 (2021)

41. Wang, J., Oliveira, M.M., Kaufman, A.E.: Reconstructing manifold and non-
manifold surfaces from point clouds. In: Proc. IEEE Int. Conf. on Visualization.
pp. 415–422 (2005)

42. Wang, P., Wang, Z., Xin, S., Gao, X., Wang, W., Tu, C.: Restricted delaunay
triangulation for explicit surface reconstruction. ACM Trans. on Graphics (Proc.
SIGGRAPH Asia) 41(5), 180:1–180:20 (2022)

43. Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., Panozzo, D.: Deep
geometric prior for surface reconstruction. In: IEEE Conf. Comput. Vis. Pattern
Recog. pp. 10130–10139 (2019)

44. Xu, R., Dou, Z., Wang, N., Xin, S., Chen, S., Jiang, M., Guo, X., Wang, W.,
Tu, C.: Globally consistent normal orientation for point clouds by regularizing
the winding-number field. ACM Trans. on Graphics (Proc. SIGGRAPH) 42(4),
111:1–111:15 (2023)

45. Xu, R., Wang, Z., Dou, Z., Zong, C., Xin, S., Jiang, M., Ju, T., Tu, C.: Rfeps:
Reconstructing feature-line equipped polygonal surface. ACM Trans. on Graphics
(Proc. SIGGRAPH Asia) 41(6), 228:1–228:15 (2022)

46. Xu, Y., Nan, L., Zhou, L., Wang, J., Wang, C.C.: Hrbf-fusion: Accurate 3d re-
construction from rgb-d data using on-the-fly implicits. ACM Trans. on Graphics.
41(3), 35:1–35:19 (2022)

47. Yang, G., Xue, F., Zhang, Q., Xie, K., Fu, C.W., Huang, H.: Urbanbis: a large-
scale benchmark for fine-grained urban building instance segmentation. In: Proc.
SIGGRAPH. pp. 16:1–16:11 (2023)

48. Yang, K., Chen, X.: Unsupervised learning for cuboid shape abstraction via joint
segmentation from point clouds. ACM Trans. on Graphics (Proc. SIGGRAPH)
40(4), 152:1–152:11 (2021)

49. Yi, R., Liu, Y.J., He, Y.: Delaunay mesh simplification with differential evolution.
ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 37(6), 263:1–263:12 (2018)

50. Yu, M., Lafarge, F.: Finding good configurations of planar primitives in unorga-
nized point clouds. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 6367–6376
(2022)


	WindPoly: Polygonal Mesh Reconstruction via Winding Numbers

