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PCAlign: a general data 
augmentation framework for point 
clouds
Chen Zhang 1,4, Abiao Li 2,5, Dan Zhang 1,4,5* & Chenlei Lv 3*

With the advancement of 3D scanning technologies and deep learning theories, point cloud-based 
deep learning networks have gained considerable attention in the fields of 3D vision and computer 
graphics. Leveraging the rich geometric information present in 3D point clouds, these networks 
facilitate more accurate feature learning tasks. However, existing networks often suffer from 
generalization defects caused by variations in pose and inconsistent representations of training data. 
In this paper, we propose a novel data augmentation framework to overcome these limitations. 
Our approach utilizes principal component analysis (PCA) to generate four aligned copies of a point 
cloud. These copies are then input into a multi-channel structure, which is compatible with popular 
backbones of point cloud-based deep networks. Finally, the outputs of the multi-channel structure are 
merged to generate rotation-invariant feature learning results. Experimental evaluations demonstrate 
the efficacy of our framework, showcasing significant improvements in various existing point cloud-
based deep learning methods. Notably, our method exhibits enhanced robustness in classification 
tasks, particularly when dealing with point clouds containing random pose variations and non-uniform 
densities. Project link: https:// github. com/ LAB123- tech/ PCAli gn.

In recent years, the utilization of 3D point clouds has become increasingly popular across various fields, such as 
robotics, autonomous driving, and augmented/virtual reality. Compared to 2D images, 3D point clouds encom-
pass comprehensive geometric information, enabling more precise feature analysis and semantic learning. Par-
ticularly when combined with deep learning frameworks, a multitude of research studies based on point clouds 
have achieved significant advancements in related applications. These studies leverage statistical knowledge 
derived from extensive datasets in an intelligent manner. They offer deep feature-based functionalities for tasks 
that cannot be addressed by conventional geometric methods, including semantic segmentation, up-sampling 
in the absence of accurate local neighborhood information, completion of missing areas. However, the scale of 
existing 3D point cloud datasets are relatively small with limited number of semantic categories due to the high 
cost of acquiring 3D point clouds. The drawback makes it difficult to design deep network architectures with 
generalization learning ability for training point clouds. To solve the problem, point cloud-based data augmen-
tation is proposed.

The main purpose of data augmentation is to address the limitations of the existing training dataset, which 
include insufficient samples, sensitivity to similar transformations (such as translation, scaling, and rotation), 
and data bias, among others. For example, when adjusting the density of a point cloud based on its point distribu-
tion or transforming its pose, the semantic label of the new copy remains unchanged. These new copies expand 
the training dataset and can be considered as targeted data augmentation. Some classic point cloud-based deep 
networks incorporate default data augmentation techniques, such as random rotation and associated normal 
vector, to improve performance. Another type of data augmentation aims to enhance the network itself by ana-
lyzing the prediction deviations between the existing training set and the test set. Due to the limited scale of the 
dataset, the probability distribution of the training dataset may not fully cover the test set, leading to performance 
deficiencies in the trained network. The second type of data augmentation addresses this issue by establishing 
a reinforcement learning framework. This reinforcement is compatible with any neural network architecture. 
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However, this data augmentation approach may encounter over-fitting issues since the deep neural network 
becomes attached to the test samples, and no new point clouds are introduced.

In this paper, we provide a new general data augmentation framework for point cloud-based deep learning. 
It contains two parts: aligned point clouds generation and multi-channel structure for semantic feature learning. 
The aligned point clouds generation is to produce regular copies from the original point cloud by PCA. Without 
additional feature analysis, the influence of different poses can be removed from the dataset, which is helpful for 
the following step to handle random placements of point clouds. Based on the aligned point clouds, the multi-
channel structure provides a universal framework to train the deep features and is compatible with any existing 
deep neural networks. By sharing multiple parameters, the structure can assist selected backbone networks in 
obtaining better feature learning ability, while being robust to different poses and improving semantic analysis 
accuracy. The pipeline is shown in Fig. 1. The contributions of our method can be concluded as:

• We present a PCA-based point cloud generation method that produces new copies of the original point cloud 
with aligned poses. It avoids complex feature coding processes while achieving rotation-invariant properties 
in the following analysis.

• We design a multi-channel structure to enhance the feature learning ability for any point cloud-based deep 
neural network. Benefiting from the aligned point clouds and decoupling combination way, the structure is 
invariant to different rotations of point clouds and compatible with various types of deep neural networks.

• We provide a comprehensive validation of data augmentation with various mainstream point cloud-based 
deep learning methods. The related analysis provides the most detailed validation data so far to demonstrate 
the impact of data augmentation in semantic analysis task.

Related works
Point cloud deep learning network
Following the development of deep learning, many researchers attempted to transfer related technologies for 
point cloud-based semantic analysis. Qi et al.1 proposed the prior work (PointNet) to implement point cloud clas-
sification and semantic segmentation. It introduces multilayer perceptron (MLP) to encode point-based features 
and max-pooling mechanisms to handle the disorder problem. Following the achievements, they enhanced the 
framework named PointNet++2 with the local geometric analysis. Afterward, researchers employed different 
backbone networks to improve the performance for similar tasks. Ben et al.3 utilized a point network named 
3DmFV based on the convolutional neural networks (CNN) and 3D Fisher vector representation to implement 
point cloud-based classification and segmentation. Li et al.4 presented another CNN-based point cloud deep 
learning framework named PointCNN. It serializes points according to feature weights for geometric feature 
keeping. Thomas et al.5 and Wu et al.6 employed the same backbone of CNN to improve the performance for 
point cloud semantic analysis. Wang et al.7 proposed a new point cloud-based deep learning backbone: DGCNN, 
which is based on the dynamic graph CNN. It further enhances the learning ability of local geometric features. 
With the widespread application of attention mechanisms in deep  learning8, many scholars have begun to intro-
duce relevant frameworks to enhance the semantic analysis ability for point clouds. Zhao et al.9 and Guo et al.10 
employed a transformer structure: PCT, which utilizes the self-attention mechanism for point cloud-based feature 
learning. Subsequently, a series of improvement  works11–14 were proposed to enhance the point cloud analysis 
performance based on the transformer structure.

Fig. 1.  Pipeline of PCAlign. The part marked by dashed lines can be replaced by any mainstream point cloud-
based deep neural network.
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Data augmentation for point cloud deep learning network
Although the new architectures for point cloud-based deep learning have achieved significant performance 
improvements, they are still limited by the bias of the training dataset, including scale, quality, and random pose. 
To address the impact of limited samples on the network’s ability to learn semantic features, research works of 
data augmentation have been proposed. Sun et al.15 proposed a rotation-invariant representation for point clouds 
which is to reduce the influences of different poses in the dataset. Li et al.16 utilized a similar method to select 
regular poses of point clouds. Xiao et al.17 proposed a data augmentation framework that can mitigate the data 
constraint effectively across different perception tasks and scenarios. Leng et al.18 propose a data augmentation 
method to leverage unlabeled data to enrich the training data.

To extend the scale of the dataset, Chen et al.19 designed an interpolation method that can generate new mod-
els from existing samples. Choi et al.20 divided objects into partitions with different regulations to enrich the data-
set. Shivanand et al.21 changed local neighborhoods to implement data augmentation in point cloud-based deep 
learning tasks. Mei et al.22 attempted to analyze point-based soft clustering to implement a data augmentation-free 
unsupervised learning for point clouds. Some data augmentation methods utilize an iterative loop mechanism 
that feeds back the results from the testing set into the training process to implement sample augmentation. Li 
et al.23 proposed a new auto-augmentation framework that automatically optimizes and augments point cloud 
samples to enrich the data diversity. The framework is sample-aware and takes an adversarial learning strategy 
to jointly optimize an augmented network and a classifier network to produce augmented samples. Zhang et al.24 
employed a bilevel optimization to establish an augmentor that minimizes a base model’s loss on a validation set.

In this paper, we propose a general data augmentation framework that is to enhance training data by align-
ment. Different from traditional methods, our framework does not perform complex feature extraction for 
rotation-invariant representation, but rather directly generates aligned copies without pose selection. Combined 
with a multi-channel structure, our framework can flexibly connect to any backbone network and conduct 
parameter-shared multi-path learning to implement data augmentation. In the following parts, we discuss the 
implementation details.

PCA-based alignment
Pre-processing
 As mentioned before, the non-uniform density takes uncontrollable factors for point cloud analysis. In addi-
tion, inconsistent point numbers and random outliers have negative effects on the deep feature analysis of point 
clouds. Therefore, pre-processing should be employed to improve the quality of the input point cloud. The tra-
ditional solutions use farthest point sampling (FPS) to uniform density and point number. The drawback is that 
the sampling doesn’t consider manifold distribution which reduces the accuracy of geometric consistency. The 
computational efficiency is relatively low when the point number of the input point cloud reaches the order of 
100k. Considering the above factors, we employ the approximate intrinsic simplification (AIVS)25 to implement 
uniform processing. As our method requires eigenvector-based point cloud alignment, random outliers should 
be removed to avoid errors. We use an outlier removal method mentioned  in26 to delete outliers.

Alignment
Based on the pre-processing point clouds, we implement PCA-based alignment that is to generate aligned point 
cloud copies. It has been introduced that the rotation of the point cloud should not change the related shape 
 feature27. However, the existing deep neural networks are sensitive to different poses of point clouds which 
reduces the robustness of feature learning. Some rotation-invariant feature representations are proposed to solve 
the problem. Such representations increase the complexity and unpredictability of the training process. Other 
solutions attempt to search for a unique pose to align point clouds. In our view, it is unnecessary as there are 
inherent ambiguities in the alignment posture of different objects. We provide a more concise method to achieve 
rotation-invariant properties. It computes eigenvectors from the point cloud at first. Then, four aligned point 
cloud copies are generated based on the eigenvectors. The four copies take all canonical poses, which reduces 
the influences of different rotations significantly.

Firstly, we compute the initial align axes by PCA for alignment. Let P to be an input point cloud. The covari-
ance matrix C from P is represented as

where pi is a point of P, p is the center of P. Based on the C , we implement PCA to achieve eigenvectors and 
eigenvalues, represented as

where ei represents the eigenvector and �i represents the eigenvalue. We achieve eigenvectors emax and emin cor-
responding to the maximum eigenvalue �max and minimum one �min . The two eigenvectors are regarded as the 
initial align axes.

It should be noticed that each aligned axis has two directions. Then, there are four possible combinations 
by emax and emin corresponding to four aligned poses. According to the combinations, four local coordinate 
systems can be established for aligned point cloud copies generation. The local coordinate systems Localcord can 
be represented as

(1)C = XX
T ,

X = [(p1 − p), ..., (pn − p)],

(2)E�E
T = C,

E = [e1, e2, e3], � = [�1, �2, �3],
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where symbols + and − represent directions, the third axis is computed by the cross product of oriented axes. 
An instance with direction labels is shown in Fig. 2. Based on the four local coordinate systems, an input point 
cloud can be transferred into four aligned point cloud copies. In Fig. 3, we show some instances. Based on the 
PCA-based alignment, the input point cloud with random poses can be aligned into four copies with aligned 
poses. The influence of different poses is reduced significantly. Although there are no one-to-one correspond-
ences for the four aligned copies, the rotation-invariant property can be guaranteed in the following calculation.

The generated aligned copies control the rotation ranges of point clouds, which provide an initial pose align-
ment. However, the copies don’t provide strict correspondences between different point clouds. It means that 
the copies still do not provide rotational invariance. To solve the problem, we design a multi-channel structure 
that packs the aligned copies of point clouds as a single input unit. The structure employs a maximum prob-
ability selection module to achieve rotational robustness. It doesn’t require additional feature coding that avoids 
compatibility issues and geometric information loss. The implementation details are introduced below.

Firstly, the aligned copies {PA} from P are input into the structure that is shown in Fig. 4. {PA} is packaged 
into a tensor ( 4× n× 3 ) that is four times the size of P ( n× 3 ). Next, the packaged tensor is used to train a 
deep network based on a selected backbone. First dimensional data of the tensor are used to obtain an output 
that is four times to the original output through the network. This process can be considered as independently 
network training four copies while the parameters are shared at the same time. Then, we achieve the result that 
corresponds to the four aligned copies. The result is a mixed vector that is four times larger than output vector 
of original network.

As mentioned before, there is no one-to-one correspondence between aligned copies at first. The order of the 
copies still influences the output mixed vector of the structure. To solve the problem, we introduce a maximum 
probability selection module to achieve rotation-invariant results from the output mixed vector. The maximum 
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Fig. 2.  An instance of local coordinate system.

Fig. 3.  Aligned point cloud copies (a)–(d) generated by PCA.
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probability selection module implements one hot encoding for output probability vectors from four channels. 
Then, we select the component with the highest value of one hot encode as the reference value. According to the 
reference value, we re-examine each channel’s probability distribution and identify the probability vector with the 
highest probability on the corresponding reference component for each channel. Finally, the examined probability 
vector is the output. An instance is shown in Fig. 5. Such a design can suppress the maximum probability of error 
in a specific channel’s impact on the determination result, which ensures the final result complies with statistical 
analysis. Note that if the probabilities are accumulated instead of the maximum, if one of the four copies has a 
high probability of making an incorrect prediction, then even if there are multiple correct predictions in other 
point cloud copies, the final prediction will still be incorrect. Therefore, here we use the maximum probability 
instead of a simple summation, and the results in Table 8 also verify the above theory.

It should be noticed that some deep neural networks are bound with random rotation modules to provide 
default data augmentation. Such modules reduce the function of aligned copies. In practice, we remove the 
module from the backbone to regular the input. Then, the optimal pose of the original input point cloud for 
semantic analysis can be filtered through the maximum probability selection. Combined with the PCA-based 
alignment and the multi-channel structure, PCAlign searches for the result with the highest semantic matching 
degree from four aligned copies while eliminating pose interference and improving learning accuracy. In the 
experimental section, we will comprehensively validate the PCAlign.

Experiments
In this part, we evaluate the performance of PCAlign in point cloud-based semantic classification tasks. We use 
a cloud computing platform to provide an efficient and fair experimental environment, which is equipped with 
Intel i9 3.0 GHz and A100 as CPU and GPU units. The operation system is Windows 11 and the deep learning 
platform is established based on pycharm and pytorch. The test datasets are  ModelNet4028 and  ShapeNet29 which 
have been used in many related research works. The point cloud learning networks used for enhancement include: 
 Point1, Point++2,  DGCNN7,  PCT10. To reveal the performance of PCAlign, we conduct tests on ModelNet40 
to investigate its impact on classification tasks under various variations and feature enhancements, including 
random rotation, resampling, and normal vector augmentation. We also evaluate the improvement of PCAlign 
in part segmentation task based on ShapeNet models. Finally, we provide a comprehensive analysis to illustrate 
the operation mechanism of PCAlign.

We used the Adam optimizer with momentum and weight decay values set to 0.9 and 0.0001, respectively. 
We warm up the network for 10 epochs and employ a cosine learning rate schedule for the remaining epochs, 
decreasing the learning rate to 0.000001 at the final epoch. For the ModelNet dataset, we trained for 150 epochs, 
starting with an initial learning rate of 0.5. For the ShapeNetPart dataset, we trained for 200 epochs, beginning 
with an initial learning rate of 0.05. Since we used multiple point cloud copies, the batch size was set to 24.

Fig. 4.  Visualization of multi-channel structure. The  PointNet1 is selected to be the network backbone as an 
instance. The final output score vector is selected from the mixed vectors that have maximum probability value.

Fig. 5.  Instance of maximum probability selection module.
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Evaluation for classification
As mentioned before, the PCAlign can combine any deep neural network to obtain semantic analysis results. 
To evaluate the performance of PCAlign in the semantic classification task, we use four mainstream networks 
to provide quantitative results. To achieve fair experimental data, we conducted new parameter training on all 
network architectures with a fixed epoch number (200). In Table 1, we report the results of the classification 
accuracy by different methods. Benefited from the PCAlign, most of networks achieve improvements of perfor-
mance. It demonstrates the excellent generalization of PCAlign for enhancement of feature learning capability. To 
be a general data augmentation framework, PCAlign needs to demonstrate its superior performance compared 
to other data augmentation approaches. For the purpose, we compare different data augmentation frameworks 
with PointNet++ and PCT for classification tasks, including  PointAugment23,  PointWOLF30,  PolarMix17 and 
 Psedoaugment18. In Table 2, we report the quantitative results. It is clear that PCAlign achieves better results.

As can be seen from the time complexity in Tables 1 and 2, the parameter count remains consistent with 
the original algorithm. Because the data augmentation algorithm designed in this paper does not add any extra 
parameters. The FLOPs have increased fourfold. Because the input samples have increased fourfold, the FLOPs 
have also increased fourfold. However, there is no significant increase in time. This is because during network 
inference, the four point cloud copies can be processed in parallel. The only additional time cost is due to the 
maximum probability selection module. However, the additional time cost for inference is also very small.

However, we must acknowledge that the algorithm proposed in this paper incurs a significant increase in 
time cost during training. Other data augmentation methods have increased the parameter count of the baseline 
algorithm. The parameter count remains consistent with the original algorithm. In terms of FLOPs, other algo-
rithms only increase a little. In terms of time, other algorithms only add a slight increase as well.

Evaluations for random rotations
The ModelNet40 takes default pose alignment that weakens the advantage of rotation-invariant property imple-
mented by PCAlign. Most of the raw collected point clouds lack unified perspectives, especially for dataset with 
significant semantic differences across categories. To obtain a more objective measurement for unpredictable 
poses of point clouds, we add random rotations into the test dataset and implement related feature training for 
classification task. In Fig. 6, we show some instances of point clouds with random rotations and related aligned 
copies. PCAlign provides stable pose control. In Table 3, we report the quantitative results of different methods. 
Comparing with previous experimental data in Table 1, all reference methods show significant performance 
degradation for the previously reported data when dealing with data that has random rotations. Benefited from 

Table 1.  Comparisons mACC, OA and the computational complexity of different deep neural networks with 
and without PCAlign in classification task based on ModelNet40.

Method/classification mACC (%) OA (%) # Params Flops/sample Time (MS)

PointNet1 87.3 90.6 3.472M 0.44G 6.8

PointNet++2 89.8 92.3 1.745M 4.09G 53.8

DGCNN7 89.7 92.6 1.815M 2.45G 35.4

PCT10 89.5 92.5 9.154M 17.15G 66.7

PCAlign +  PointNet1 88.7 ( ↑ 1.5) 91.2 ( ↑ 0.6) 3.472M 1.803G 10.1

PCAlign + PointNet++2 90.7 ( ↑ 0.9) 92.8 ( ↑ 0.5) 1.745M 16.23G 64.6

PCAlign +  DGCNN7 89.6 ( ↓ 0.1) 92.6 ( ↑ 0.0) 1.815M 9.63G 47.2

PCAlign +  PCT10 91.1 ( ↑ 1.9) 93.8 ( ↑ 1.3) 9.154M 67.92G 78.9

Table 2.  Comparisons of different data augmentation framework in classification task based on ModelNet40.

Method/classification mACC (%) OA (%) # Params Flops/sample Time (MS)

PointNet++2 89.8 92.3 1.745M 4.09G 53.8

PCT10 89.5 92.5 9.154M 17.15G 66.7

PointWOLF30 + PointNet++2 90.1 92.4 2.115M 5.32G 59.6

PointWOLF30 +  PCT10 90.3 92.8 9.538M 18.23G 71.3

PointAugment23 + PointNet++2 90.5 92.6 2.354M 5.69G 61.3

PointAugment23 +  PCT10 90.7 93.2 10.032M 18.65G 74.5

PolarMix17 + PointNet++2 90.2 91.4 1.745M 5.74G 65.3

PolarMix17 +  PCT10 90.3 93.1 9.154M 18.25G 79.5

Psedoaugment18 + PointNet++2 90.4 91.5 2.425M 6.571G 70.2

Psedoaugment18 +  PCT10 90.5 93.3 10.834M 19.65G 83.6

PCAlign + PointNet++2 90.7 92.8 1.745M 16.23G 64.6

PCAlign +  PCT10 91.1 93.8 9.154M 67.92G 78.9
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Fig. 6.  Visualization of point clouds with random rotations and related aligned copies.

Fig. 7.  Visualization of classification accuracy changes according to the network iterations for different 
methods. The label (P) means that the method is enhanced by PCAlign.

Table 3.  Comparisons of different deep neural networks with and without PCAlign in classification task based 
on ModelNet40. Random rotations are added into the point clouds before training which is used to estimate 
the pose influence.

Method/classification mACC (%) OA (%)

PointNet1 82.5 86.4

PointNet++2 87.8 90.2

DGCNN7 87.3 90.5

PCT10 87.9 90.6

PCAlign +  PointNet1 88.7 ( ↑ 6.2) 91.2 ( ↑ 4.8)

PCAlign + PointNet++2 90.6 ( ↑ 2.8) 92.6 ( ↑ 2.4)

PCAlign +  DGCNN7 89.6 ( ↑ 2.3) 92.6 ( ↑ 2.1)

PCAlign +  PCT10 90.7 ( ↑ 2.8) 93.6 ( ↑ 3.0)
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the PCA-based alignment, PCAlign provides rotational robustness that ensures training process is not affected 
by various poses. The classification results based on PCAlign are same between Tables 1 and 3.

In fact, the precise control of posture provided by PCAlign not only offers rotational robustness, but also 
aids in the convergence of final deep network parameter optimization. The reason is that the feature encoding 
on aligned copies helps capture significant geometric information related to the semantic information, while 
simultaneously eliminating semantic ambiguity caused by different poses. To demonstrate the hypothesis, we 
present the classification accuracy as a function of the number of network iterations in Fig. 7. It proves that 
PCAlign is helpful for convergence.

Evaluations for random resampling
It has been discussed that the local neighborhoods with different point distributions or densities take an impor-
tant influence on data augmentation. The reason is that the neighbor structures decide the feature coding paths 
in most of deep neural networks. In general, the coding paths are constructed by K-nearest neighbor searching 
and farthest point sampling. Significantly, non-uniform distributions change the k neighbors for points. In the 
previous test, the point clouds were pre-processed by uniform simplification to optimize the point distributions. 
To evaluate the influence of non-uniform distributions in point-based semantic analysis, we provide a quantita-
tive analysis for point clouds with different point distributions. We use a random resampling to select points 
from the point cloud, which doesn’t consider densities. In Fig. 8, we compare two kinds of resampling results. 
The random resampling changes the point distributions in different local regions. Based on the changed point 
clouds, we retrain networks and report new classification results in Table 4. Experimental data directly reflects 

Fig. 8.  Visualization of random resampling for point clouds.

Table 4.  Comparisons of different deep neural networks with and without improvement of PCAlign in 
classification task based on ModelNet40. Random resampling is added into the point clouds before training 
which is used to evaluate the influence of point distributions.

Method/classification mACC (%) OA (%)

PointNet1 86.0 89.9

PointNet++2 90.2 92.4

DGCNN7 88.7 92.1

PCT10 90.0 92.7

PCAlign +  PointNet1 87.5 ( ↑ 1.5) 90.4 ( ↑ 0.5)

PCAlign + PointNet++2 90.6 ( ↑ 0.4) 92.8 ( ↑ 0.4)

PCAlign +  DGCNN7 89.4 ( ↑ 0.7) 92.5 ( ↑ 0.4)

PCAlign +  PCT10 90.5 ( ↑ 0.5) 92.7 ( ↑ 0.0)
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the sensitivity of the related neural network to point distributions in local neighborhoods. Overall, PCAlign can 
achieve more stable results.

Evaluations for normal vector enhancement
In the latest experiments and engineering practices, researchers found that introducing normal vectors as input 
data can effectively enhance the feature learning ability of deep neural networks. By only learning the coordi-
nates of points, the network naturally becomes sensitive to poses. Once normal vectors are introduced, more 
local geometric information is incorporated into the feature encoding process, which significantly enhances the 
encoding capability of related deep neural networks for point cloud geometric features. To evaluate the influence 
of normal vector enhancement, we report the classification accuracy of different methods in Table 5. It can be 
observed that the performance of the majority of methods has been improved. Due to the PCA-based alignment, 
PCAlign effectively establishes a global normal alignment for point clouds. It limits the performance improve-
ment of normal vector enhancement for PCAlign.

Evaluations for part segmentation
For improvement of classification, aligning poses of PCAlign is a straightforward and intuitive approach. Indeed, 
it can particularly enhance object recognition accuracy in cases where there are significant pose variations 
between point clouds. To further validate PCAlign’s generalization in deep learning tasks, we evaluate its perfor-
mance in the task of part segmentation. In Table 6, we report the improvement of PCAlign for  PCT10 and  PG31. 
The classification accuracy of most categories can be improved. We also compare different data augmentation 
frameworks with PCT for part segmentation task. In Fig. 9, some instances are shown. In Table 7, we report 
the quantitative results. The  PointAugment23 and  PointWOLF30 attempt to change the point positions, which 
take some diversity of semantic features. However, such diversity cannot improve the accuracy of local feature 

Table 5.  Comparisons of different deep neural networks with and without improvement of PCAlign in 
classification task based on ModelNet40. Normal vectors are bound as the input regarded as the default data 
augmentation.

Method/classification mACC (%) OA (%)

PointNet1 89.5 91.7

PointNet++2 91.0 92.9

DGCNN7 88.8 91.7

PCT10 90.0 92.8

PCAlign +  PointNet1 89.1 ( ↓ 0.4) 91.7

PCAlign + PointNet++2 90.7 ( ↓ 0.3) 92.8 ( ↓ 0.1)

PCAlign +  DGCNN7 89.6 ( ↑ 0.6) 91.8 ( ↑ 0.1)

PCAlign +  PCT10 91.1 ( ↑ 1.1) 93.8 ( ↑ 1.0)

Fig. 9.  Visualization of part segmentation of different data segmentation frameworks.
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detection, especially for the joints of components. PCAlign achieves better results as a general data augmenta-
tion framework.

Evaluation of ablation experiments
To demonstrate the effectiveness of copy settings, we conducted ablation studies by varying the number of copies 
sampled from generated samples. As shown in Table 8, the performance is worst with 1 copy. At 2 copies, perfor-
mance improves the most as the voting mechanism takes effect. With 3 copies, performance further improves, 
reaching its peak at 4 copies. This is because increased votes help correct errors with accurate predictions from 
other points in the point cloud. However, with 5 and 6 copies, excessive copies introduce more errors, leading to 
biased predictions and significantly longer training times. Summing over four copies and taking the maximum 
value is crude and further degrades performance due to incorrect predictions. However, averaging performs 
better than a single copy, demonstrating this module’s effectiveness in our study.

We conducted some experiments, including averaging, summing, and performing convolution operations, 
with the results presented in Table 9. Both averaging and summing yield similar results, significantly lower than 
those achieved using our proposed module. These methods are too simplistic to filter out the correct point cloud 
copies, resembling traditional data augmentation by rotating data, but involve averaging or summing point cloud 
feature copies. Convolution slightly improves performance over averaging and summing due to the increased use 
of network parameters, though this improvement is minor. In contrast, our module achieves peak performance 
by effectively identifying the correct copies among the 4 point cloud copies.

Analysis
Based on the experimental data, the performance improvement brought by PCAlign is significant. By comparing 
the data in Tables 1 and 3, it can be observed that the random model posture significantly reduces the accuracy 

Table 6.  Comparisons of different deep neural networks with and without improvement of PCAlign in part 
segmentation task based on ShapeNet.

Method ins. avg. air. bag cap. car cha. ear. gui. kni. lam. lap. mot. mug pis. roc. ska.

PCT 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3

PCAlign+PCT 86.7↑ (0.6) 84.7 84.5 84.1 79.9 90.5 81.6 89.8 88.9 85.8 96.7 80.2 96.0 86.1 65.3 82.1

PointGT 85.8 84.3 84.5 88.3 80.9 91.4 78.1 92.1 88.5 85.3 95.9 77.1 95.1 84.7 63.3 75.6

PCAlign+PointGT 86.5↑ (0.7) 84.8 84.9 88.1 81.1 91.2 81.1 92.3 88.7 85.3 96.1 78.3 94.8 85.1 64.0 79.5

Table 7.  Comparisons of different data augmentation framework in part segmentation task based on 
ShapeNet. The backbone is  PCT10.

Method ins. avg. air. bag cap. car cha. ear. gui. kni. lam. lap. mot. mug pis. roc. ska.

PCT 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3

PointWOLF30+PCT 86.4↑ (0.3) 84.2 84.3 84.4 80.7 90.7 81.4 92.1 88.7 85.9 96.2 78.8 95.9 85.9 64.4 81.4

PointAugment23+PCT 86.3↑ (0.2) 84.1 84.3 84.6 79.5 90.4 81.2 92 87.5 85.3 96.1 78.5 96.1 85.4 64.1 83.5

PCAlign+PCT 86.7↑ (0.6) 84.7 84.5 84.1 79.9 90.5 81.6 89.8 88.9 85.8 96.7 80.2 96.0 86.1 65.3 82.1

Table 8.  Investigation of different number of copies.

Samples 1 2 3 4 5 6 sum

Cat.mIoU 82.1 83.4 84.1 84.8 84.6 84.5 83.9

Ins.mIoU 83.7 85.5 86.3 86.7 86.5 86.4 86.8

Table 9.  Ablation study about the multi-channel structure.

Models AVG SUM CONV OURS Cat.mIoU Ins.mIoU

A � 83.5 85.4

B � 83.6 85.5

C � 83.8 85.9

D � 84.8 86.7
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of feature learning in traditional deep networks. PCAlign can avoid the loss of feature learning accuracy, espe-
cially when the training data has significant pose variations. For point clouds with non-uniform densities, some 
methods may experience degraded performance. PCAlign can reverse this degradation and make feature learn-
ing of non-uniform point clouds more stable. In Table 10, we show the performance fluctuations for different 
methods based on the experimental data of Tables 1, 2, 3, 4 and 5. It proves that the PCAlign is able to stabilize 
the performance of various methods and improve their robustness. For part segmentation task, PCAlign provides 
improvement for most categories based on quantitative analysis in Tables 6 and 7. Compared with other data 
augmentation frameworks, PCAlign can achieve better performance.

Limitations
PCAlign primarily implements data augmentation through pose alignment, it can achieve significant improve-
ment for training point clouds with random poses, which has been proved in Table 3. However, it cannot improve 
the classification performance by adding input features such as normal vectors. The experimental data shown 
in Table 5 illustrate that normal vectors cannot improve the classification accuracy for methods with PCAlign-
based data augmentation. The reason is that the maximum probability selection mandatory select a single pose 
as the output result which is not good to point clouds that belongs to the same category but exhibits different 
distributions. The supplementary role of the normal vector is diminished precisely due to the mandatory pose 
selection. Another limitation is that PCAlign removes the random rotation module before training which may 
lead to performance degradation. Some networks can achieve stronger feature learning capabilities with improved 
robustness through the analysis of local neighborhoods accompanied by random rotation module. In Table 11, 
we show the classification accuracy of  PointMLP32 with and without PCAlign. Due to the removal of the random 
rotation module, there has been a certain degradation in performance even the poses of point clouds are aligned.

Conclusion
In this paper, we provide a general data augmentation framework, PCAlign, to achieve the rotation-invariant 
property for point cloud-based semantic analysis. The PCAlign uses PCA-based alignment to generate aligned 
copies from the input point cloud. The unpredictable pose is controlled within a smaller range which reduces the 
influence of random rotations. With the multi-channel structure, PCAlign can achieve more accurate semantic 
analysis results while keeping strict rotational robustness. It doesn’t require complex feature coding and has good 
compatibility with mainstream backbone networks. In general, PCAlign enhances the training samples by align-
ment, resulting in improved rotational robustness and feature analysis performance for the connected network. 
In future work, we will explore a general feature enhancement strategy to improve the performance of PCAlign.

Table 10.  Performance fluctuations of classification accuracy by different methods. The average values of 
methods enhanced by PCAlign are larger than original ones. The range of performance fluctuation (±) is 
controlled by PCAlign significantly, which means that the robustness is improved.

Method/classification mACC (%) OA (%)

PointNet 85.2±2.7 88.9±2.5

PCAlign+PointNet 88.3±0.8 90.9±0.5

PointNet++2 89.2±1.4 91.6±1.4

PCAlign+PointNet++2 90.8±0.2 92.8±0.2

DGCNN7 88.5±1.2 91.7±1.2

PCAlign+DGCNN7 89.5±0.1 92.6±0.1

PCT 89.1±1.2 91.9±1.3

PCAlign+PCT 90.8±0.3 93.3±0.5

Table 11.  Comparisons of PointMLP with and without PCAlign in different test datasets with mentioned 
variations on ModelNet40.

Dataset Method/classification mACC (%) OA (%)

Original PointMLP 91.0 93.2

PCAlign+PointMLP 90.2(↓ 0.8) 92.5(↓ 0.6)

Random rotations PointMLP 90.4 93.0

PCAlign+PointMLP 90.2(↓ 0.2) 92.5(↓ 0.5)

Random resampling PointMLP 90.8 93.2

PCAlign+PointMLP 90.1 ( ↓ 0.7) 92.3(↓ 0.9)

Noraml vector enhancement PointMLP 91.0 93.1

PCAlign+PointMLP 88.1(↓ 2.9) 91.4(↓ 1.7)
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