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ABSTRACT

Since the feature representations of the points located at the
junction regions of various parts are ambiguous, it is still
challenging to exploit the fine-grained semantic features of
point clouds on part segmentation tasks. To resolve the issue,
we design a modified transformer module, named Laplacian
transformer, to investigate the local differences between each
point and its corresponding neighbors based on graph Lapla-
cian theory. This module constructs a more accurate local
geometric representation of the point cloud. It concentrates
on the points located at the junction areas of various parts
while boosting the recognition effect of these points. Encap-
sulated with the Laplacian module, we propose a Unet-like
transformer framework to perform part segmentation for point
clouds. Experimental results demonstrate that the proposed
framework achieves more accurate results on public bench-
mark datasets.

Index Terms— Point Cloud, Fine-grained Feature, Lapla-
cian Transformer, Part Segmentation

1. INTRODUCTION

Deep learning has witnessed a technological revolution in nat-
ural language processing and computer vision tasks, design-
ing a deep learning framework for point clouds is much de-
sired for its wide range of applications, such as autonomous
driving and 3D modeling. As the pioneer work for point cloud
processing based on deep learning, PointNet [1] is proposed
to extract global features via symmetric functions for point
classification and segmentation tasks. The drawback of Point-
Net is that it extracts global features from each point in isola-
tion, neglecting local neighborhood interactions that are vital
for simplification [2] and shape reconstruction [3].

Based on PointNet, many improvement schemes [4, 5, 6]
are designed to investigate local geometric features besides
processing individual points with the aim of extracting repre-
sentative global features. However, the neighborhood search
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Fig. 1. Comparisons of semantic-based part segmentation.
The points exhibiting incorrect segmentation results are indi-
cated by pink markers enclosed within red boxes. Our method
achieves more accurate results in the junction areas.

method employed by these algorithms suffers from the in-
herent problem that it is performed in the coordinate space
instead of the feature space, which imposes a constraint on
finding points with feature similarity in a higher-dimensional
space. Therefore, dynamic local neighborhood graph is con-
sidered to explore the local geometric information of point
clouds, which performs convolution-like operations on the
edges of linked nearby points. The representative methods
include DGCNN [7] and LDGCNN [8]. However, the in-
formation between the deep features of the point cloud and
the neighbors searched may be too similar to provide efficient
edge vectors, resulting in limitations in modeling the global
features of the point cloud.

Currently, a efficient model is the attention mechanism-
based transformer [9], which possess powerful capability in
learning global features for large-scale data. By incorporat-
ing the self-attention mechanism into the point cloud network
model, Point Transformer [10] achieves competitive results
in point cloud processing tasks. However, unreliable results
may still be obtained when transformer models are employed
to perform point cloud segmentation tasks. As shown in Fig.1,
there is a high probability that points located in the junction
region are incorrectly segmented, which are produced by am-
biguous topological relations and overlapping points.
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(b) Laplacian Transformer
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Fig. 2. (a) Overview of the proposed framework. (b) Laplacian Transformer module. For simplicity, position encoding δ is
neglected in Fig.2 (b). MLP: Multilayer Perceptron; KNN: K-Nearest Neighbor algorithm; N: number of points; B: Batch size;
C: number of channels of each point; K: number of neighborhood points searched.

To address this issue, we develop a Laplacian transformer
module to generate a Laplacian score for each point cloud
based on graph Laplacian theory. Combining the attention
mechanism, the Laplacian transformer module is encapsu-
lated in a UNet-like transformer framework to reveal point-
based attention with Laplacian score. In general, regions with
a higher Laplacian score are clustered along the edge con-
tours of the object component, while intermediate flat regions
receive a lower Laplacian score. Therefore, the framework
is instructed to concentrate on the junction regions of various
parts through the Laplacian score of each region to achieve
the improved segmentation effect for these points. The con-
tributions are summarized as:

• We design a Laplacian transformer module based on
graph Laplacian theory. The module concentrates on
the edges of different parts to improve the performance
for contour point learning.

• Based on the Laplacian transformer module, we pro-
pose a UNet-like transformer framework for point
clouds on part segmentation tasks. It improves the
accuracy of local geometric features in segmentation
tasks.

• We validate the effectiveness of the proposed method
on benchmark datasets and perform a series of ablation
studies for better performance.

2. PROPOSED METHOD

2.1. Overview

The overall architecture of the proposed model is shown in
Fig.2 (a). A hierarchical network is utilized to extract multi-
scale features from the input point cloud, which is similar to
U-Net [11]. The input point cloud has N points with three
coordinates and RGB values. In the network, an encoder-
decoder structure is used, where the encoder and decoder

are composed of five stages. Within the first encoder stage,
MLP and Laplacian Transformer layers are sequentially per-
formed to aggregate local structural information for the input
point cloud. Then, to extract semantic information from local
neighborhoods in a high-dimensional space, the features are
progressively downsampled with channel expanding in the
following four stages, which consists of a downsample layer
and a Laplacian transformer layer. The similar structure is
designed in decoder stage. The only difference is that the
features are progressively upsampled by four layers. The
cross-entropy function is employed to calculate the gap be-
tween the prediction and the ground truth element-wise. The
details of the Laplacian transformer module are given in the
following parts.

2.2. Laplacian Transformer Module

The transformer layer in Point Transformer [10] is designed
based on the vector self-attention mechanism. Firstly, given
point cloud features, three MLP operations φ, ψ and α are
performed to obtain query Q, key K and value V vectors, re-
spectively, which maps the point cloud to a high-dimensional
space. Then, KNN is used to search neighbors set χ(i) for
point clouds x = {xi|i = 1, 2, . . . N}. With the addition op-
eration between the position encoding δ and the resultQ−K,
the attention between each point and its corresponding neigh-
borhood is computed to represent the similarity. The refined
point features are obtained by multiplying the attention with
the result V + δ. The computational formulation can be ex-
pressed as

yi =
∑

xj∈χ(i)

ρ(φ(xi)− ψ(xj) + δ)⊙ (α(xj) + δ) (1)

A drawback of Eq.(1) is that it assigns equal weight to all
points, which ignores the fact that the importance attached
to points located in the junction region is more essential than
points located in the flat region. For this reason, the Laplacian
transformer module is designed, as shown in details in Fig.2
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(b), which generates a Laplacian score for each point cloud to
achieve differentiated weight allocation.

Specifically, the Laplacian score is multiplied with the re-
fined point features in order to obtain the desired recognition
effect on the edge regions of the point cloud.

The entire structure represented by the formula is

yi =
∑

xj∈χ(i)

ρ(φ(xi)−ψ(xj)+δ)⊙ (α(xj)+δ)⊙ (Si+1)

(2)
where Si denotes the Laplacian score of point cloud xi. We
set the parameter as Si + 1 to avoid zero values of Si in
the central flat regions. Details on how to generate Laplacian
scores for each point cloud are given in the next section.

2.3. Laplacian Score

We generate Laplacian score for point clouds based on graph
Laplacian theory [12]. We regard single point cloud as the
undirected graph G = {V,E,W} that contains a vertex set
V of cardinality |V | = n , the edge set E connects vertices
and the adjacency W represents the weight of each point to
other points. W is a real symmetric matrix, where Wij de-
notes the weight between vertex Vi and vertex Vj . As shown
in Fig.3, we find k nearest neighbors for each vertex in the
graph. If vertex Vj belongs to the neighbor set of vertex Vi,
the corresponding weight Wi,j between vertex Vi and vertex
Vj is computed. Otherwise, Wij is zero.

We use the exponential function of the Euclidean distance
to compute the weight between vertex Vi and vertex Vj :

Wij =

{
exp(−∥V c

i −V c
j ∥2

2

σ2 ),
∥∥V c

i − V c
j

∥∥2
2
≤ ε

0, otherwise
, (3)

where V c
i ∈ R3 is the 3D coordinate of vertex Vi. σ and ε

are parameters where ε is a hyper parameter controlling the
range of neighbor points of vertex Vi. Eq.(3) shows that the
weight between two vertices is inversely proportional to their
distance. With a closer distance, a greater weight is com-
puted. We normalize the weight Wij between vertex Vi and
corresponding neighbor Vj as W̃ij = Wij/

∑
j Wij . Finally,

the formula of Laplacian score for vertex Vi is

Si = Vi −
∑
j

W̃ijVj , (4)

where Si means the difference between vertex Vi and the re-
sult weighted by vertex Vj belonging to the neighbor set of
vertex Vi. The difference between a point and its neighbors
is proportional to the Laplacian score. As shown in Fig.3, the
regions of the aircraft with non-zero Laplacian score are con-
centrated in the junction regions of various parts. This means
that larger weights are assigned to the points in this region,
boosting the model to learn the features of these points with
similar geometric information.
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Fig. 3. The overall pipeline of generating Laplacian score for
point clouds. The green vertices represent the collection of
neighbor points searched for the red vertex during the process
of neighborhood selection.

3. EXPERIMENTAL RESULTS

3.1. Evaluation Methodology

We demonstrate the efficiency of the proposed model on the
ShapeNet benchmark for part segmentation. The dataset con-
tains 16,880 3D models categorized into 16 categories with 50
different parts across the dataset. We separate 14,006 mod-
els for training and 2874 models for testing. We uniformly
sample 2048 points across the model surface. The settings of
other hyperparameters remain consistent with [10]. We use
Intersection-over-Union (IoU) to evaluate the proposed model
and compare it with other algorithms. The IoU of a category
is computed from the average IoU of all objects belonging to
that category. Cls. avg. is the mean IoU averaged across all
object categories, and ins. avg. is the mean IoU averaged
across all test objects.

3.2. Part Segmentation Results on ShapeNet

Table 1 shows the accuracy comparison with respect to dif-
ferent algorithms performed on the ShapeNet dataset. It can
be seen that KPConv method achieves the best average accu-
racy compared to other counterpart methods. After replacing
the transformer layer employed in Point Transformer[10] with
the Laplacian transformer module, the proposed framework
achieves the best accuracy, outperforming the model KPConv
by 0.4% in terms of ins.avg. While performing poorly on
8 out of 16 objects, such as airplane, cap, and car, the pro-
posed model achieves the best accuracy on bag, chair, ear-
phone, and lamp. Since the points distributed in the junction
regions contained in these categories are easier to identify. As
shown in Fig. 4, the Laplacian score calculated at the edge
areas of different parts take higher values, which have an ef-
fect on rectifying the outcomes for the point clouds in these
parts predicted by the model. At the same time, comparing
the segmentation results of our method with the point trans-
former algorithm, our method has minor errors in the junction
regions of various parts.
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Table 1. Part segmentation results on ShapeNet. air.: airplane. cha.: chair. ear.: ear-phone. gui.: guitar. kni.: knife. lam.: lamp.
lap.: laptop. mot.: motorbike. pis.: pistol. roc.: rocket. ska.: skateboard. tab.: table

Method ins. avg. air. bag cap car cha. ear. gui. kni. lam. lap. mot. mug pis. roc. ska. tab.
PointMLP[13] 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3

DGCNN[7] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.8 63.5 74.5 82.6
PointNet++[4] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
GAPNet[14] 84.7 84.2 84.1 88.8 78.1 90.7 70.1 91.0 87.3 83.1 96.2 65.9 95.0 81.7 60.7 74.9 80.8

PointCNN[15] 86.1 84.1 86.5 86 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 82.3
KPConv[16] 86.4 84.6 86.3 87.2 81.1 91.1 76.5 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

PointTransformer [10] 86.3 84.9 86.4 85.2 80.2 91.3 79.5 92.2 88.3 85.2 96.2 78.0 95.6 84.8 64.7 81.2 83.6
Ours 86.8 84.3 86.6 85.2 79.1 91.5 81.2 92.9 88.5 85.9 96.3 77.8 95.9 84.5 64.4 81.3 83.9

Table 2. Effectiveness of different number settings of ε in the
definition of Eq.(3) and K in the definition of KNN.

ε K cls. avg. ins. avg.
0.02 15 84.2 86.4
0.03 15 84.4 86.5
0.03 20 84.9 86.8
0.04 20 84.6 86.7
0.04 25 84.5 86.6

Table 3. Investigation of different operators.
Operators cls. avg. ins. avg.

Concatenation 81.7 84.5
Summation 83.4 85.7

Hadamard product 84.9 86.8

3.3. Ablation Study

Effects of different hyper-parameter settings. Concerning
the effect of different settings of ε, as defined in Eq.(3), and
K, as used in KNN, we test our model with various settings.
As shown in Table 2, the performance improves as the param-
eters ε and K increase. The reason is that the Laplace score
calculated for points located at the junction regions can more
accurately reflect the disparity between the central point and
its neighborhood when a larger range of neighboring points
is considered. Also, a proper choice of the value of K can
contain more representative neighbor points, which favors the
extraction of local features. However, the performance dete-
riorates when the number of ε and K become larger.

Effects of different operators. We apply different op-
erators that incorporate Laplacian score into the transformer
structure to evaluate their performance. As shown in Table 3,
Concatenation, Summation, and Hadamard product refer to
the element-wise operations of concatenating over the chan-
nel, adding, and multiplying the Laplacian score with the re-
fined points in the Laplacian transform module, respectively.
The results presented in Table 3 demonstrate the superior per-
formance of the Hadamard product over other operators. Un-
like element-wise addition, the Hadamard product excels at
greatly amplifying the weights assigned to points within the

Ground truth Point transformer Ours Laplacian score

Fig. 4. Visualization of segmentation results of different
methods. The Laplacian score indicates the attention of the
Laplacian transformer module assigned to the whole point
cloud object. The higher the Laplacian score of a region, the
more attention the model pays to that region.

target region across the entire point cloud.

4. CONCLUSION

In this paper, in order to alleviate the ambiguity of the
point cloud features embodied at the junction regions of
various parts, we design a Laplacian transformer module
based on graph Laplacian theory for contours point learn-
ing. This module reveals the implied spatial relationship
between points and generates the corresponding Laplacian
score for each point cloud, guiding the model to concentrate
on points located at the junction regions. Based on the Lapla-
cian transformer module, we propose a Unet-like transformer
framework for part segmentation task. We have shown that
the proposed framework is effective on public datasets and
outperforms a series of mainstream approaches. In the future,
we will explore a novel fusion of transformer and convolution
techniques to enhance the performance of 3D segmentation
in the task of semantic segmentation for real-world scenes.
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