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Abstract

Shape reconstruction from 3D point clouds is one of the most important
topic in the field of computer graphics. In this paper, we propose a
subdivision-based framework for this topic. The framework includes
two parts: distance field optimization and mesh generation. The
first part optimizes a point cloud into an approximately isotropic
one based on a subdivision structure. The second part is to gen-
erate a triangular mesh from the optimized point cloud. The mesh
is regarded as the result of shape reconstruction. The advantages
of our method includes accurate geometric consistency, improved
mesh quality, controllable point number, and fast speed. Experi-
ments indicate that our method has good performance for shape
reconstruction (compare to the state-of-the-art, our method achieves
five and six times improvement in Hausdorff distance-based mea-
surement and density estimation). The executable file is available:
(https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction.)

Keywords: Shape Reconstruction, Mesh reconstruction, Distance field
optimisation
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Fig. 1 Four instances of reconstruct meshes based on our method. The vertex numbers of
all meshes are equal (10,000).

1 Introduction

Following the development of 3D scanning technology, 3D point clouds have
been widely used in different fields such as 3D object modeling and virtual
reality, etc. Compared to 2D image or video-based analysis framework [1][2],
Using 3D point clouds with complete geometric features can support more
accurate analysis tasks [3]. However, point clouds cannot be used directly in
such tasks since some geometric features should be extracted from continuous
surface, but not discrete points. Some applications require accurate surface to
represent real objects such as face recognition[4], skull reconstruction [5][6],
terrain modeling [7][8]. Therefore, point cloud-based shape reconstruction is
proposed to solve the problem.

The target of the shape reconstruction is to rebuild a representation of
simplicial complex for the point cloud. It can be regarded as a continuous
3D surface, which is represented by a 3D triangular mesh in most cases. To
achieve the mesh, connections of different points in a point cloud should be
determined. Based on the theory of moving least-squares (MLS) [9], connec-
tions can be recovered by local regions defined by points with their neighbors.
The performance of the reconstruction depends on two issues: geometric con-
sistency and accuracy of local regions. The geometric consistency means that
the reconstructed mesh should be consistent to the MLS surface of original
point cloud. It guarantees the reconstructed mesh can be used to represent
the original point cloud. The accuracy of local regions determines the qual-
ity of the mesh structure. It is important for subsequent mesh-based feature
extraction and analysis.

For the first issue, some methods are proposed to implement the recon-
struction from a point cloud directly such as Delaunay triangulation [10], Ball
pivoting [11], Scale space [12], etc. These methods do not change point posi-
tions in reconstruction which keeps the consistency between the reconstructed
mesh and the original point cloud. However, the accuracy of local regions can
not be assured and promoted. In the view of mathematical model, the qual-
ity of local regions can be represented by a distance field that is a collection
constructed by distances between all points and their neighbors. It reflects the
uniform degree of a point cloud. An optimized distance field means that dis-
tances between all points and their neighbors are similar. The aforementioned
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Fig. 2 The pipeline of our method.

methods do not optimize the distance field and produces many low quality and
error triangles which affect geometric feature extraction in related applications.

A well-known solution is to resample a point cloud into an isotropic one
based on Centroidal Voronoi Tessellation (CVT) [13]. The positions of points
are iteratively updated to generate a global isotropic point cloud. When the
update is completed, the global optimization of distance field is achieved. Based
on the optimized distance field, the accuracy of local regions can be assured
and the quality of the reconstructed mesh is improved. Considering the time
cost of Voronoi cell estimation, some methods [14][15] attempt to optimize the
distance field directly. However, the solution changes the original point cloud
in local tangent space excessively. Most of points are moved which break the
geometric consistency between the point cloud and the reconstructed mesh in
a certain extent.

In this paper, we propose a subdivision-based framework for point cloud-
based shape reconstruction. As mentioned before, our framework is constructed
by two parts: distance field optimization and mesh generation. The distance
field optimization is implemented by a point cloud simplification scheme, which
is simplify a point cloud into an approximate isotropic one. It is formulated as a
simple and efficient distance field optimization. The simplification is processed
in a subdivision structure which improves the efficient by parallel computation.
Most of points in the simplified point cloud are kept in their original positions.
Combining an up-sampling processing, the point number of simplification can
be controlled even without loss of number to the original one. For special
geometric feature keeping such as sharp edge, a flexible simplification is used
as an optional function. In the part of mesh generation, we reconstruct high
quality meshes based on the proposed subdivision structure. It provides the
topological constraints by adjacent boxes. According to the constraints, a mesh
cropping is designed to remove error connections. Compared to the traditional
methods, the accuracy of local regions is improved. In Figure 1, we show some
instances by our method. In summary, our contributions are as follows.

• A subdivision-based framework is proposed for point cloud-based mesh
reconstruction. The framework balances the geometric consistency and accu-
racy of local regions while keeping more geometric features in reconstructed
mesh. It improves the practicality of the reconstruction.
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• An efficient distance optimization method is proposed, which is constructed
by pre-processing, simplification, and up-sampling. The method can be used
to efficiently optimize the distance field of a point cloud with a certain point
number. It is robust to the input point cloud with non-uniform density.

• Based on the topological constraints provided by the subdivision structure,
a mesh cropping process is provided to avoid error connections. It improves
the accuracy of local regions.

The rest of the paper is organized as follows. In Section 2, we intro-
duce relevant classical and state of the art works for point cloud-based shape
reconstruction. In Section 3, we discuss the fundamental of our framework.
In Section 4, we show the details of distance field optimization based on the
subdivision structure. In Section 5, we introduce the mesh generation with
cropping. The experiments in Section 6 show the effectiveness and efficiency
of our method.

2 Related Works

There have tremendous works for point cloud-based shape reconstruction
during the past two decades. In this paper, we focus on single 3D object
shape reconstruction without data driven support. Considering the rela-
tionship between the exits works and our method, we select the most
relevant parts of them to discuss, which are classified into three categories:
Approximation-based, Delaunay-based, and Point resampling-based.

Approximation-based methods attempt to rebuild a 2-manifold to fit point
cloud. The methods achieve the reconstruction by establishing an objective
function, such as Poisson Function [16][17], Scale Space [18], Subdivision-based
fitting [19][20][21], and spline-based modeling [22]. Poisson function was a clas-
sical method for point cloud based meshing task. The core idea was solving a
Poisson equation to achieve an indicator function, which was a piece-wise con-
stant function and signed the different sides of the surface. Scale space meshing
provided a smoothing operator for the raw point clouds. According to esti-
mate the mean curvature and solve a mean curvature motion in point clouds,
a smooth surface was constructed [18]. In summary, such methods reconstruct
smooth surface from a point cloud and are robust to noise. However, the local
shape features are broken in a certain degree and the stability are not good
(wrong estimation for normal vectors and incorrect approximate region).

Delaunay-based framework is regarded as the mainstream technology in 3D
triangular meshing. It provides a simple and efficient point connect scheme for
a point cloud without local surface approximation. There has a lot of works
based on Delaunay triangulation and its improved version. Ameta et al. [23]
utilized the dual characteristics between Voronoi Diagram and Delaunay trian-
gulation to rebuild the surface. Cohen et al. [10] proposed a greedy Delaunay
triangulation to fix the local errors in the reconstruct mesh. Such methods are
restricted by the points’ positions in general. The quality of the reconstruct
mesh is poor when the points’ distribution of input point cloud is nonuniform.
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A B C D

Fig. 3 An instance of simplification for distance field optimization. A: input point cloud;
B: subdivision structure; C parallel simplification in adjacent voxel boxes (red points repre-
sent original points in point cloud, gray points are redundant points removed by FPS); D:
simplification result.

Considering the drawback of the Delaunay-based methods, some works
attempt to resample the point cloud into an isotropic one. The distance field
is optimized by the resampling process. The quality of the reconstruct mesh
is improved naturally based on resampling point clouds. The representative
method is Centroidal Voronoi Tessellation (CVT) [13] based resampling. Based
on the Lloyd’s relaxation, the Voronoi Diagram was optimized in local tangent
space. The advantages of such works include high quality of the triangulation
result and robust to different local points’ density. Based on the isotropic
remeshing, Lv et al. proposed a point cloud-based reconstruction method [14]
to generate isotropic mesh. After that, he extended the framework to output
curvature adaptive result [15]. However, some local geometric features are lost
during the optimization and the geometric consistency is broken by the point
movements. Our reconstruction method is classified into this part and attempt
to keep the geometric consistency and more features in the reconstructed mesh.

3 Fundamental

The point cloud-based shape reconstruction task is to construct a represen-
tation of simplicial complex to fit the discrete points. According to the two
issues for reconstruction, we propose the related mathematical models. For
geometric consistency, the mathematical representation of the consistent can
be represented by

Econ = H(M, P ), (1)

where Econ is the quantified energy of geometric consistency between recon-
structed mesh M and original point cloud P . It is computed by the mea-
surement H which can be computed by the Hausdorff distance [24]. In the
reconstruction, the Econ should be reduced as much as possible.

It has been discussed that the point-based distance field is used to represent
local regions. By optimizing the field, local regions of different points can be
accurately detected. An ideal distance field means different points share same
distance to their neighbor points. It is called isotropic property. In Equation
2, the quantification of isotropic property is formulated as

Eiso =
∑
pi

∑
pj

∥∥b(pi, pj)− b
∥∥, pi, pj ∈ P, (2)
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where Eiso is the distance field energy for isotropic property measurement. P
is the point cloud, pi and pj are points in P . The point pj is the neighbor
point for pi. The parameter b is the distance of two neighbor points and b is
the average border distance of all border distance b in P . If we want to build
the correct connections between different points in a point cloud, the border
distance b and the relationship between points and their neighbors should be
optimized. Then, the shape reconstruction task can be transferred into the
distance field optimization with geometric consistency.

Based on the aforementioned knowledge, we design a simple and efficient
framework to optimize the distance field for shape reconstruction while keep-
ing geometric consistency. The pipeline of our method is shown in Figure 2.
The framework is based on a subdivision structure which is similar to voxeliza-
tion. Points are divided into different voxel boxes. The distances between the
points are optimized in the voxel boxes independently. The optimized point
cloud is the combination from the point sets in different voxel boxes. We also
provide the mesh generation method to reconstruct the triangular mesh from
the optimized point cloud. With a mesh cropping, the accuracy of the recon-
structed mesh can be further improved. In following parts, we discuss details
of the implementation of our framework.

4 Distance Field Optimization

As the first part of our framework, the distance field optimization is to opti-
mize Eiso of Equation 2. Considering the drawback of resampling [13], we do
not want to change many point locations in optimization. The core thought
of our method is concise and efficient: we remove some points to adjust the
distribution of the point cloud, then the Eiso can be optimized and most of
reserved points are kept in their original locations. Therefore, our distance field
optimization can be regarded as a kind of simplification. Following the core
thought, we design the implementation of the distance field optimization.

Before the formal introduction of the implementation, we provide a pre-
processing step for input point clouds. In general, a point cloud scanned from
laser scanner or other equipment may take some noise and redundant points.
Such influence factors affect the efficient in simplification. Therefore, the pre-
processing is necessary to reduce the influence of the factors. In our method,
the pre-processing includes two functions: denoising and initial simplification.
For denoising, we utilize PointCleanNet [25] in pre-processing. For initial sim-
plification, we apply Poisson-disk resampling [26] which can be used to reduce
the density of point cloud and uniform the point distribution. The initial sim-
plification also provide a searching radius to control the edge connection in
shape reconstruction. In the next section, the radius is used in mesh cropping
to improve the quality of reconstructed result.

After pre-processing, we introduce the implementation of our distance field
optimization. To adjust the distribution of the point cloud, we utilize the
simplification in the subdivision structure. A same implementation is explained
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Fig. 4 Parallel simplification scheme. The yellow boxes are arraigned into a same round
for parallel simplification. The order of boxes selection in eight rounds. The adjacent boxes
are not simplified in a same round.

in [27]. It divides points into different voxel boxes according to certain rate. In
Equation 3, we provide the mathematical model as

Psim =
∑
v∈V

{p|p ∈ Pv, Pv ∈ P}, (3)

where P is the input point cloud after pre-processing, Pv is a point set of P in
a voxel box v, V represents the collection of all voxel boxes. The simplification
result Psim is constructed by simplified results in different voxel boxes while
reducing the energy in Equation 2. Once points of P are divided into different
voxel boxes, the simplification result can be achieved from parallel simplifica-
tion in boxes independently. The scale of voxel box in the structure has an
obviously influence for simplification. If the scale is too small, the candidate
points in single voxel box cannot support simplification. It produces false dis-
continuities in local region. In contrast, the large scale of voxel box reduces the
performance of parallel simplification and the topological constraints are lost.
In practise, we provide a default value based on experience, which is shown as

Lscale =
Lmax[
3
√

P/8
] , (4)

where Lscale is the scale, Lmax is the longest length of three axes of P , P is
the point number.

Based on the subdivision structure, we use the farthest point sampling
(FPS) [28] to simplify point cloud directly. The FPS is processed in different
voxel boxes independently. The start point in each voxel box is selected from
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Fig. 5 Two instances of up-sampling and mesh cropping. First row: the new points (green)
are inserted into the point cloud according to the Voronoi cell; second row: the gray area
means there have no reserved points in the voxel boxes. The triangle passing through the
gray area should be deleted.

the point which has the closest distance to the center of the box. The sim-
plification point number is computed by the simplify ratio computed by the
original point number and simplification point number specified by user. The
points in each voxel box are simplified by equal ratio. Combining the reserved
points from different voxel boxes, the final simplification result is obtained. If
the point number of simplification is not equal to user specified one, we just
add or reduce some points in different boxes following the FPS order. Finally,
the accurate simplification result is achieved and it is an approximate isotropic
one. In Figure 3, we show an instance of simplification.

The FPS achieves the simplification points in different voxel boxes indepen-
dently. In each voxel box, the distance field of the point subset is optimized.
However, the distances between points in borders of adjacent voxel boxes are
not adjusted. To solve the problem, we divide the parallel computation for
simplification into different rounds. The adjacent voxel boxes are not simpli-
fied in same round. In addition, the simplification points of neighbor boxes
should be included by FPS for the processing voxel box. In Figure 4, we show
an instance to explain the scheme. The parallel computation is divided into
eight rounds which guarantees the global uniform property of simplification.
The order of eight rounds for boxes selection is shown in Figure 4.

As mentioned before, the implementation of the distance field optimiza-
tion is based on the simplification. A prerequisite is that the point number of
reconstructed mesh should be significantly less than the original point cloud,
which ensures the simplification has enough candidate points to simplify. Obvi-
ously, it reduces the practicality of the method. Once the point number should
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Fig. 6 An instance of flexible simplification for sharp edge keeping. The edges are enhanced
in the simplification.

be kept after reconstruction, the requirement cannot be satisfied by the cur-
rent implementation. To solve the problem, we add a up-resampling process to
increase density of point cloud before simplification. We search a local region
represented by Voronoi cell for each point and insert new points proportion-
ally. By default, we insert three points into each border of Voronoi cell and one
point into each related edge of a triangle. The interpolation add new points
as a arithmetic sequence into each intersection area between the triangle area
and the Voronoi cell. The new points are mapped into the MLS surface of
the point cloud for geometric consistency keeping. Based on the interpolation,
the density of point cloud can be increased according to the Voronoi cells and
the process can be implemented parallel. Even there have some repeat points
inserted into the adjacent area of cells, the simplification can ignore them to
obtain final result. An instance is shown in Figure 5.

To keep some import geometric features, we use the flexible simplifica-
tion [27] in the implementation. The basic idea is to simplify points with
different rates to enhance the certain feature. For instance, if we want to
keep and reconstruct sharp edges from a point cloud, we detect edge points
at first. Then, we simplify edge points with a higher rate in simplification
and remove more normal points. The sharp features are enhanced in the sim-
plification which can be inherited into the mesh generation. However, such
enhancement should be controlled in a certain degree; otherwise, the Eiso is
increased in the regions with sharp edges. A suitable ratio for simplification
(8:2) is recommended for balance. The formulation of the flexible simplification
is represented as {

|Pn|Rn + |Pe|Re = |Ps|
Rn/Re = 2/8

(5)

where P n and P e are the point numbers of normal and edge point set, Rn

and Re are simplification rate for P n and P e. P s is the simplification point
number specified by user. According to the Equation 5, we can obtain the
simplification result with sharp feature keeping. An instance is shown in Figure
6.
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5 Mesh Generation

After the distance field optimization, an approximately isotropic point cloud
is obtained from the original one. Based on the point cloud, we provide mesh
generation as a second part in our framework. Benefited from the distance
field optimization, the local regions can be accurately detected. We utilize a
greedy Delaunay triangulation [10] to detect accurate local regions and gener-
ate mesh as the shape reconstruction result, which has been realized in CGAL
library. The mesh generation inherits the advantage of Delaunay triangulation
for geometric consistency. It achieves the balance between Econ and Eiso.

Even the generated mesh from the approximately isotropic point cloud
has a higher quality, the incorrect connections between points are inevitable.
The reason is that the greedy Delaunay triangulation does not consider the
topological constraints of the original point cloud. The topological constraints
in original point cloud are kept in the subdivision structure. The adjacent
voxel boxes represent the constraints in the structure. Suppose that a triangle
in generated mesh is crossing the region without reserved points, which means
that the triangle has incorrect connections. In Figure 5, an instance shows the
situation. According to the constraints in the subdivision structure, we provide
a mesh cropping processing to remove error connections.

The cropping process is used to delete triangles with incorrect connections.
A correct triangle of the mesh should follow the adjacent limitation between
voxel boxes in the subdivision structure. If the voxel boxes or the local regions
have no reserved points of simplification, we call them ”gray region”(Figure
5). A triangle is passing the gray region means that the edge is crossing the
discontinuous area. The triangles should be deleted. The mesh cropping is
based on the rule to delete such triangles. As mentioned before, the initial
simplification in pre-processing computes a searching radius. It can be used
to control the edge connection. Once an edge of a triangle is longer than the
radius, the cropping is also triggered. After cropping, error edges are deleted
which improve the quality of reconstructed mesh.

6 Experiments

We show the performance of our method in this section. The experimen-
tal point clouds are selected from Stanford [29] and SHREC [30] models.
The experimental platform is constructed by Visual Studio 2019 in win-
dows 10 system (X64). The hardware configuration is constructed by a
laptop machine, Intel i7 9750H 2.6GHz, 16G RAM, and GeForce GTX
1660Ti. The datasets are constructed from Stanford and SHREC models.
Our program can be downloaded from https://github.com/vvvwo/Parallel-
Structure-ShapeReconstruction. Using the ”.exe” file, users can construct
triangular meshes from point clouds directly. The program supports differ-
ent kinds of data format, including .off, .obj, and .ply. The input parameters
include file path and specified point number. The section contains three parts:

https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction
https://github.com/vvvwo/Parallel-Structure-ShapeReconstruction
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Fig. 7 Comparisons of reconstructed meshes from Stanford models by different methods.

firstly, we evaluate the accuracy of geometric consistency of different recon-
struction methods; secondly, we measure the quality of reconstructed meshes
by the methods; finally, we provide a comprehensive analysis for the methods.

6.1 Evaluation of Geometric Consistency

The accuracy of geometric consistency can be represented by the Hausdorff
distance mentioned in Equation 1. In order to evaluate the influence of triangle
with error edges, we sample some points from triangles in the reconstructed
mesh and add them into the computation of Hausdorff distance. Even the
points are not moved in some methods, the Hausdorff distance is increased by
the sampled points from error triangles. We compare the distances of different
reconstruction methods, including Ball pivoting [11], Scale Space reconstruc-
tion [18], Screen Poisson [16], Advancing Delaunay reconstruction [10][31],
CVT-based reconstruction [13], Neural-Pull [17] and our method. Some meth-
ods cannot control the point in the reconstruction, including Ball pivoting,
Scale Space, and Advancing Delaunay. We use resampling method [32] imple-
mented by CGAL library to sample the original point cloud with same point
number for fair. In Figures 7, the results are shown from Stanford models.
We also test the reconstruction without change of point number. In Figure 8,
reconstructed meshes by different methods are shown from SHREC models. It
can be used to explain the function of up-sampling in our framework. In Table
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Fig. 8 Comparisons of reconstructed meshes from SHREC models by different methods.
With the up-sampling, our method does not reduce point number in final result.

Table 1 Comparisons of Hausdorff distances by different methods. The models (Child to
WoodMan) are reconstructed without change of point number, the up-sampling is used in
our method; other models are resampled into 10,000 or 20,000 (Dragon) points in the
reconstruction.

Models
Methods

Ball
Pivoting

ScaleSpace
Advancing
Delaunay

Screen
Poisson

CVT
Neural
-Pull

Ours

Child 0.02019 0.03034 0.03265 0.03639 0.20681 0.09721 0.01941
Deer 0.01836 0.02396 0.02656 0.03494 0.18631 0.08623 0.01625
Dog 0.02098 0.02804 0.02591 0.03245 0.13151 0.04782 0.01151

Elephant 0.02008 0.02504 0.02772 0.03715 0.23331 0.05762 0.02639
Girl 0.02863 0.03795 0.02461 0.02599 0.10562 0.07861 0.02653

Orangutan 0.02177 0.04112 0.03898 0.04472 0.07475 0.09533 0.02009
Weedle 0.02098 0.03921 0.03141 0.03572 0.03888 0.08719 0.03544

WoodMan 0.01721 0.02299 0.02156 0.02407 0.03366 0.04792 0.01505
Angle 0.00241 0.00314 0.00569 0.00631 0.00544 0.00407 0.00259

Armadillo 0.00287 0.00506 0.00433 0.00489 0.00564 0.00751 0.00236
Bunny 0.00313 0.00546 0.00939 0.00837 0.00822 0.00891 0.00253
Dragon 0.00278 0.00329 0.00418 0.00546 0.00769 0.00467 0.00281
Hourse 0.00285 0.00331 0.00458 0.00328 0.00486 0.00672 0.00269

1, we show the Hausdorff distances of different methods. Our method achieves
better geometric consistency in the reconstruction.

6.2 Evaluation of Mesh Quality

To measure the quality of reconstructed meshes, the average value of minimum
inner angles which reflects the isotropic property is used. The minimum inner
angle means the smallest angle in a triangle. The average value of the angles
represents the quality of the triangles in the reconstructed mesh. We generate
color maps for the visualization of angles. In Figure 9, we show the color maps.
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Fig. 9 Color maps for average values of inner angles by different method.

Table 2 Comparisons of average values of inner angles and density parameters in the
reconstructed meshes by different methods.

Methods
Ball

Pivoting
ScaleSpace

Advancing
Delaunay

Screen
Poisson

CVT
Neural
-Pull

Ours

Models Angle Dr Angle Dr Angle Dr Angle Dr Angle Dr Angle Dr Angle Dr
Child 33.44◦ 0.033 31.84◦ 0.044 35.34◦ 0.043 32.41◦ 0.029 47.21◦ 0.149 33.01◦ 0.025 42.08◦ 0.016
Deer 34.41◦ 0.031 33.39◦ 0.034 36.56◦ 0.036 32.42◦ 0.019 47.29◦ 0.179 32.91◦ 0.021 43.86◦ 0.011
Dog 37.73◦ 0.035 35.62◦ 0.037 39.61◦ 0.037 32.34◦ 0.024 47.95◦ 0.291 32.82◦ 0.023 43.38◦ 0.011

Elephant 34.11◦ 0.032 33.06◦ 0.037 35.91◦ 0.045 32.87◦ 0.031 46.97◦ 0.542 31.93◦ 0.025 41.92◦ 0.018
Girl 36.58◦ 0.032 34.56◦ 0.041 38.73◦ 0.037 32.41◦ 0.024 47.62◦ 0.071 32.48◦ 0.025 42.56◦ 0.015

Orangutan 37.53◦ 0.042 34.85◦ 0.059 38.42◦ 0.059 32.07◦ 0.029 47.16◦ 0.054 33.26◦ 0.028 41.27◦ 0.019
Weedle 33.55◦ 0.036 32.44◦ 0.043 34.38◦ 0.042 32.07◦ 0.031 47.52◦ 0.031 32.12◦ 0.029 41.44◦ 0.016

WoodMan 33.11◦ 0.024 33.45◦ 0.031 36.61◦ 0.026 32.58◦ 0.014 48.69◦ 0.059 31.29◦ 0.021 43.91◦ 0.008
Angle 29.05◦ 0.041 30.65◦ 0.048 30.83◦ 0.071 32.18◦ 0.054 46.85◦ 0.058 32.31◦ 0.048 42.69◦ 0.018

Armadillo 31.05◦ 0.051 30.06◦ 0.057 31.74◦ 0.058 32.24◦ 0.035 47.02◦ 0.034 33.28◦ 0.034 41.59◦ 0.016
Bunny 33.94◦ 0.052 32.86◦ 0.071 33.85◦ 0.096 32.15◦ 0.032 47.22◦ 0.048 32.57◦ 0.041 41.47◦ 0.031
Dragon 30.51◦ 0.034 28.99◦ 0.049 31.09◦ 0.065 32.64◦ 0.046 46.45◦ 0.079 33.26◦ 0.035 41.68◦ 0.022
Hourse 32.81◦ 0.039 31.95◦ 0.051 33.08◦ 0.059 32.52◦ 0.048 45.71◦ 0.058 33.12◦ 0.041 42.25◦ 0.041

We also provide the density parameter Dr computed by the average distances
between all points and their k-neighbors to represent the quality of distance
field of reconstructed mesh. The computation is shown as:

Dr = Max{A(M)} −Min{A(M)}, (6)

where A represents the average distances set of the mesh M , and the average
distance is computed between a point and its adjacent points according to the
mesh. We select the maximum and minimum values from A(M) and compute
the difference. Then, the Dr represents the degree of uniform density in the
reconstructed meshes. In Table 2, we compare the global average value of mini-
mum inner angles and density parameters in reconstructed meshed by different
methods. Our method achieves similar performance with CVT-based method
according to the angle values. The uniform density of our reconstructed mesh
is better than others, which is benefited from the distance field optimization.

We have discussed that the flexible simplification is used to enhance sharp
edges with distance field optimization. With the enhanced simplification result,
the sharp edges can be kept in the reconstructed mesh. We compare the recon-
structed results with sharp edges by different methods in Figure 10. The results
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Fig. 10 Comparisons of reconstructed meshes with sharp edges by different methods.

Table 3 Comparisons of average time cost for SHREC models by different methods. For
Screen Poisson, the time cost of normal detection is added (green); for our method, the
time cost of simplification with up-sampling is added (red).

Methods
Ball

Pivoting ScaleSpace
Advancing
Delaunay

Screen
Poisson CVT

Neural
-Pull Ours

Time 11.54s 23.48s 9.19s 0.564s + 2.69s 591.31s 1103.21s 30.12s + 8.46s

Table 4 Comparisons of average time cost for Stanford models by different methods. For
Ball Pivoting, ScaleSpace and Advancing Delaunay, the time cost of resampling is also
reported (blue); for Screen Poisson, the the time cost of normal detection is added (green);
for our method, the time cost of simplification is added (red).

Methods
Ball

Pivoting
ScaleSpace

Advancing
Delaunay

Screen
Poisson

CVT
Neural
-Pull

Ours

50,000 62.35s + 15.89s 62.35s + 24.27s 62.35s + 8.78s 1.11s + 1.26s 623.56s 1081.12s 4.56s + 7.56s
100,000 346.15s + 17.35s 346.15s + 24.88s 346.15s + 8.86s 5.38s + 3.56s 756.26s 1089.22s 5.12s + 7.81s
200,000 455.72s + 19.22s 455.72s + 24.52s 455.72s + 8.96s 7.19s + 3.98s 636.15s 1091.23s 5.36s + 8.54s
500,000 1382.35s + 78.28s 1382.35s + 48.34s 1382.35s + 20.28s 12.78s + 4.26s 865.36s 1109.35s 12.56s + 22.15s

show that our method retains the sharp edges with fewer discontinuities and
smoothness.

6.3 Comprehensive Analysis

Combined with previous experiments, we provide a comprehensive analysis for
facilitate understanding of the advantages of our method. For geometric con-
sistency, our method achieves better result which is benefited from the distance
field optimization in our framework. The simplification for the optimization
dose not change the positions of most point. On the contrary, the Screen Pois-
son, Ball pivoting and CVT-based methods move points in the reconstructed
mesh which reduce the accuracy of geometric consistency. For mesh quality
estimation, the CVT-based method achieves better performance for inner angle
optimization. However, the time cost of the optimization in Voronoi diagram
is huge and the edges are crashed in the regions of sharp features in a high
probability (instance shown in Figure 10). Without distance field optimiza-
tion, the error connections between different points can not be avoided in the
reconstructed mesh, which influences the performance of methods, including
Ball pivoting, Scale space, and Advancing Delaunay.
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For time cost report, we compare the different methods in Tables 3 and 4.
In SHREC models, the up-sampling is used to keep the point number in our
method which increases the time cost. However, our method still achieves bet-
ter performance than the CVT-based method. For Stanford models, the point
cloud with different point number are reported separately. The point num-
ber is specified to 10,000 in the reconstruction. It is clear that the time cost
of our method is reduced. Even the time cost of resampling and simplifica-
tion is not considered, our method is still fast than Advancing Delaunay with
same triangulation strategy. It means that the optimized point cloud improved
the reconstruction process. The Screen Poisson achieves fastest speed in the
reconstruction. However, it requires the computation of normal vectors. The
point number is controlled in a rough range which limits the scope in related
applications.

Although there have many advantages of our method, some limitations still
exist. The simplification in our framework achieves an approximate isotropic
result from the input point cloud. It is not a strict isotropic one. The quality
of the reconstructed mesh from our optimized point cloud is worse than CVT-
based method (some results are shown in Table 2). For geometric consistency,
the up-sampling process adds some new points into the point cloud which
reduce the accuracy. In Table 1, the Hausdorff distances of our method in some
models are worse than the results of Ball pivoting. Nonetheless, our method
still has excellent utility in practice. It is a balance strategy for quality and
speed, while keeping the geometric feature as much as possible.

7 Conclusions

We have proposed a Subdivision-based framework for point cloud-based shape
reconstruction. The method includes distance field optimization and mesh gen-
eration. For distance field optimization, the subdivision structure is established
to divides a point cloud into different voxel boxes, while keeps the topological
constraints by adjacent voxel boxes. Based on the structure, the simplification
scheme is implemented to optimize the point cloud. The sparse and nonuni-
form point clouds can be processed by up-sampling before simplification. The
sharp features can be enhanced by the flexible simplification. The mesh gener-
ation establishes the mesh based on the optimized point cloud. With the mesh
cropping, the accuracy of the reconstruction is improved. The experimental
data show that our method is better than classical methods for the balance
between geometric consistency and accuracy of local regions. The point number
is controlled and sharp edges can be rebuild in the final result.

In future works, we will improve the quality of isotropic density in distance
field optimization. The triangulation also should be enhanced to fit more strict
manifold property while keeping the sharp edges and regions with significant
curvature changes.
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