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MSL-Net: Sharp Feature Detection Network
for 3D Point Clouds
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Abstract—As a significant geometric feature of 3D point clouds, sharp features play an important role in shape analysis, 3D
reconstruction, registration, localization, etc. Current sharp feature detection methods are still sensitive to the quality of the input point
cloud, and the detection performance is affected by random noisy points and non-uniform densities. In this paper, using the prior
knowledge of geometric features, we propose a Multi-scale Laplace Network (MSL-Net), a new deep-learning-based method based on
an intrinsic neighbor shape descriptor, to detect sharp features from 3D point clouds. Firstly, we establish a discrete intrinsic
neighborhood of the point cloud based on the Laplacian graph, which reduces the error of local implicit surface estimation. Then, we
design a new intrinsic shape descriptor based on the intrinsic neighborhood, combined with enhanced normal extraction and
cosine-based field estimation function. Finally, we present the backbone of MSL-Net based on the intrinsic shape descriptor. Benefiting
from the intrinsic neighborhood and shape descriptor, our MSL-Net has simple architecture and is capable of establishing accurate
feature prediction that satisfies the manifold distribution while avoiding complex intrinsic metric calculations. Extensive experimental
results demonstrate that with the multi-scale structure, MSL-Net has a strong analytical ability for local perturbations of point clouds.
Compared with state-of-the-art methods, our MSL-Net is more robust and accurate. The code is publicly available at
https://github.com/XianheJiao/Sharp-feature-detection-in-point-cloud.

Index Terms—Sharp feature, 3D point cloud, intrinsic neighbor, multi-scale Laplace network.
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1 INTRODUCTION

WIth the development of 3D scanning technology, 3D
point clouds are widely collected and gradually be-

coming one of the most popular data representations in 3D
vision tasks. As an important geometric feature in 3D point
clouds, sharp features are useful in various applications,
including 3D reconstruction, localization, registration, visu-
alization, etc. From the perspective of manifold distribution,
sharp features describe the areas in point clouds where
the curvature changes abruptly or discontinuously. Such
property supports precise semantic feature descriptions for
calculations in reconstruction and location. In embedding
spaces, compared to other regions, sharp features can rep-
resent more prominent geometric details while conforming
to human subjective perception in visualization, as shown
in Fig. 1. Therefore, sharp feature detection is an important
task in point-cloud-based analysis.

To detect sharp features, some geometry-based rules
are used to guide the detection framework in traditional
solutions [1] [2]. For instance, the edge with sharp features
shows the rapid change of normal-vector-based angles in
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(a) Joint Model (b) Sharp Features

Fig. 1. Instance of shape feature detection for Joint model.

the local region. Once such rules are formulated quantita-
tively, the detection can be processed by algorithms. Some
local shape descriptors, such as normal vectors and cur-
vatures, provide measurement tools. However, the quality
of scanned point clouds from real scenes can not support
accurate local-region-based analysis and geometric feature
extraction. Limited by the performance of scanning devices,
randomly noisy points and non-uniform densities in differ-
ent regions are unavoidable, which have an unpredictable
impact on sharp feature detection.

Following the development of deep learning tech-
nologies, some researchers propose learning-based frame-
works [3] [4] to improve performance. Such frameworks
fully utilize the feature learning ability of deep neural
networks to extract structured knowledge from training
datasets. Then, more complex semantic information estab-
lishes efficient and robust sharp feature detection rules.
However, the local neighbor detection of these methods
does not often follow the manifold constraints, which re-
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duces the detection performance. I.e., these methods focus
more on overall edge accuracy but are less sensitive to the
local geometric features. Furthermore, the performance of
these methods is affected by nonuniform point distribution
and noisy points. Therefore, most current deep learning
methods cannot achieve stable, accurate, and robust sharp
extraction.

To solve the above challenges, we propose a novel point-
cloud-based sharp feature detection method, MSL-Net, com-
bining traditional geometric analysis and deep learning. It
includes three core parts: discrete intrinsic neighbor (DIN)
detection, intrinsic shape operator, and multi-scale Laplace
network. The DIN detection aims to search intrinsic neigh-
bors under the geodesic distance metric according to the
manifold constraint. It has been shown that the intrinsic
neighbors can improve local region representation [5]. The
intrinsic neighbors reduce the probability of misidentifying
points with small Euclidean distances produced by sharp
curvature changes. Based on the intrinsic neighbors, we
present an intrinsic shape operator to describe local shape
features. This operator makes full use of the geometric
homogeneity of the intrinsic neighbors, combines with the
cosine field positioning function to provide accurate and
robust feature representation based on normal vectors, and
improves the sensitivity to sharp features. Finally, we design
the backbone of MSL-Net to learn the rules of sharp features
with different conditions. With the help of intrinsic neigh-
bors and operators, MSL-Net can be quickly converged.
Benefiting from the intrinsic neighborhood and shape de-
scriptor, our proposed MSL-Net has a simple architecture,
only requires a few MLP layers while significantly im-
proving the detection accuracy and robustness. The overall
pipeline is shown in Fig. 2. The main contributions of the
paper are as follows:

• We present a discrete intrinsic neighbor detection
for point clouds. It improves the accuracy of neigh-
bor detection without complex geodesic computation
and Voronoi-cell-based analysis.

• We propose an intrinsic shape operator to describe
the local shape feature. The operator fully considers
normal vector distributions based on the intrinsic
neighbors. It provides accurate representations for
geometric details, making subsequent feature anal-
ysis easy.

• We design a multi-scale Laplace network to learn the
sharp features from intrinsic shape operators. The
network has a multi-channel structure for feature
learning in different scales of local regions. It sup-
ports accurate sharp feature detection and improves
the robustness of noisy point clouds.

The rest of this paper is organized as follows. In Sec.
2, we summarize representative methods for sharp feature
detection. In Sec. 3, we describe the design of DIN detection.
The intrinsic shape operator and backbone of MSL-Net are
introduced in Secs. 4 and 5, respectively. We evaluate the
performance of our method and present the comparisons
with different measurements in Sec. 6. Finally, we conclude
our work in Sec. 7.

2 RELATED WORKS

Sharp feature detection methods can be roughly divided
into two classes: local-shape-descriptor-based and data-
driven-based. For the first class, the main idea is to establish
the formulation for the sharp feature based on the related
geometric information represented by local shape descrip-
tors. Such descriptors are often constructed with the aid
of normal vectors or curvatures, which represent the local
shape features. For the second class, the core issue is to train
a learning model from the collected data for sharp feature
estimation.

Local-shape-descriptor-based methods attempt to for-
mulate sharp features based on geometric information.
Pauly et al. [6] proposed a PCA-based multi-scale fea-
ture extraction to fit sharp lines of point-sampled sur-
face. Xia et al. [7] extracted edges by analyzing the ratio
between eigenvalues of local point sets. In addition to
the above methods, which extracted sharp features from
a statistical perspective, more methods extracted features
from a geometric perspective. Lin et al. [8] established the
Line-Segment-Half-Planes (LSHP) structure for point-cloud-
based line segments. Hackel et al. [9], [10] used graph-based
methods for structured edge extraction by extending local
sharp feature detectors through global analysis.

Many works focused on normal features to extract sharp
features. Mérigot et al. [1] utilized normal-vector-based
distributions in local Voronoi cells to extract sharp edges
from point clouds. Demarsin et al. [11] employed a first-
order segmentation to extract candidate feature points and
reconstructed the sharp lines by a graph. Li et al. [12]
improved normal estimation for point location in high
curvature regions or complex sharp features, and a similar
solution was proposed in [13]. Weber et al. [14] calculated a
Gaussian graph of the samples using normal vectors, which
is used to identify sharp features in local regions. Zhang
et al. [15] proposed a pair consistency voting scheme to
estimate normal vectors while preserving sharp features.

In summary, the above methods extract local shape
descriptors from point clouds without complex semantic
analysis and pre-training. The implementation is relatively
concise, and the performance is stable. However, the accu-
racy of these methods is influenced by the quality of point
clouds. Once the non-uniform densities and noisy points
have a high proportion in the point cloud, the extracted local
shape descriptors may lose the function for sharp feature
detection.

Data-driven-based methods try to learn the latent fea-
tures from training data for sharp feature detection. With
the development of deep learning, such methods achieved
increasing attention. Based on classic CNN networks, sev-
eral methods have been proposed. ”Feng et al. [16] utilized
the U-Net architecture in combination with attention mech-
anism for edge point classification. Subsequently, they em-
ployed bilateral high-pass filtering to filter the edge points,
which can effectively represent the overall characteristics
of the model. Raina et al. [17] proposed a CNN-based
structure to predict the sharpness field (ShF) for edge point
classification. In the same way, Himeur et al. [18] trained
a CNN to learn the description of edges and use it to
efficiently detect edges in 3D point cloud. Matveev et al.
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Fig. 2. The pipeline of our method. Three core components: discrete intrinsic neighbor detection, intrinsic shape operator, and MSL-Net Architecture.
The discrete intrinsic neighbor detection is used to extract intrinsic neighbors for each point. The intrinsic shape operator describes the local shape
feature based on the intrinsic neighbors. The MSL-Net Architecture learns the sharp feature detection model based on the intrinsic shape operators.

[3] also proposed a CNN-based network, DEF-Net, to detect
and enhance edge points. Loizou et al. [19] constructed a
graph convolutional network architecture for parts’ bound-
ary detection from point clouds.

A few methods constructed neural networks using point
clouds as input for extracting sharp features. Yu et al. [4]
designed an edge-aware network (EC-Net) based on the up-
sampling framework [20], which sampled the point cloud
and regressed the distance from each point to the edge
curve. Wang et al. [21] proposed an end-to-end learnable
network, PIE-Net, for parametric inference of edges. The
network is trained based on PointNet++ [22] to implement
edge and corner point classification. Zhang et al. [23]
proposed a denoising framework with an encoder and a
decoder structure for sharp feature preserving. Edirimuni
et al. [24] designed a deep-learning-based method to filter
point clouds while keeping sharp features. Zhao et al. [25]
enhanced the noisy robustness by estimating displacement
vectors according to the training dataset. Zhu et al. [26] em-
ployed the backbone of PointNet++ to encode point features
for sharp feature detection. Himeur et al. [18] proposed to
formulate edge detection as a classification task and utilize
neural networks to learn it. Cherenkova et al. [27] achieved
edge point detection and line fitting through a network to
effectively realize clear and continuous edge classification.

The above mentioned methods fully utilized the advan-
tages of deep learning to learn sharp features from point
clouds. However, most of them implement feature concen-
tration based on the Euclidean space but not the manifold
space. Moreover, the k-nearest neighbor (KNN) detection
extracts unstable neighborhood relations between points in
local regions, which reduces the accuracy for sharp feature
detection. In addition, edge extraction requires both local
accuracy and global consistency. It is difficult to achieve this
goal with a single-scale network architecture.

In this paper, we propose a new solution that combines
the advantages of the two classes. It extracts the intrinsic
neighbors to fit the manifold surface and defines the in-
trinsic local shape descriptors. Using a multi-scale Laplace
network, the descriptors are further trained to formulate a

judgment for sharp features.

3 METHOD

3.1 Overview

We propose a new discrete intrinsic neighbor (DIN) detec-
tion for point clouds (Section 3.2). Based on the intrinsic
neighbors, we present an intrinsic shape operator to de-
scribe the local shape feature (Section 3.3). Finally, we design
the backbone of MSL-Net to learn the rules of sharp features
with different conditions (Section 3.4). The pipeline of our
method is shown in Fig. 2.

3.2 Discrete Intrinsic Neighbor Detection

As aforementioned, the local neighbor detection on point
clouds should fit the manifold constraint. If there is an
implicit surface corresponding to a point cloud as a con-
tinuous form, the manifold constraint means that the point-
based distance should be defined “on” the surface, which
is consistent with the first fundamental form. It can be
represented as

d(pi, pj) =

∫ 1

0

√
E(

du

dt
)
2

+ 2F
du

dt

dv

dt
+G(

dv

dt
)
2

dt, (1)

where E,F, and G are second partial derivatives of a curve
parametric function with respect to the u and v that are
directions in the parameter domain, pi = (u(0), v(0)), pj =
(u(1), v(1)). Once the curve parametric function is provided
based on the point cloud, the distance can be computed
that satisfies the manifold constraint. In general, the curve
parametric function is defined by the geodesic path, and
the intrinsic neighbor is detected based on the geodesic
distance. It is shown in [5] that the performance of intrinsic
neighbor detection is good in point cloud-based applica-
tions, including simplification, resampling, and reconstruc-
tion. However, the implementation of intrinsic neighbor
detection is complicated in practice. Due to the significant
computational cost and sensitivity to the quality of the
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Fig. 3. Instance of iterative neighbor searching strategy. A: initial state;
B: 1-ring neighborhood L1 of source point (red); C: iterative neighbor
searching for L2. Blue dashed circles represent the wavefront for differ-
ent values of σ, which is the scale of the neighborhood.

target point cloud, calculating the geodesic path is time-
consuming and difficult. Although some methods have sim-
plified the computation of geodesic, the time cost is still rel-
atively high. Inspired by the Laplace graph theory [28] and
the fast marching algorithm [29], we propose a new discrete
intrinsic neighbor (DIN) detection for point clouds. This
detection can be regarded as an iterative neighbor searching
strategy based on the Laplace graph. The neighbor search-
ing process adopts the core idea of fast marching [29] to
keep an interface of the wavefront. The advantage is that
it does not require computing geodesic distance or Voronoi
cells to implement intrinsic control. The implementation of
the search process is simple and efficient while satisfying
the manifold constraint.

Let P represent the input point cloud, pi is a point of
P , L(pi)σ is the intrinsic neighborhood of pi, σ is the scale
of the neighborhood. Once the σ is provided, the neighbor
detection is implemented iteratively as

L(pi)σ = L(pi)σ−1 + {pi}σ, and (2)

{pi}σ = {pj |pj ∈
∑

pl∈{pi}σ−1

L(pl )1, pj �∈ L(pi)σ−1}, (3)

where {pi}σ is the discrete form for interface of wave-
front, which is collected from the adjacent neighborhood
L1 (defined by Voronoi cell in tangent space, it can be
approximated as a k-neighbor region, k = 6) of the previous
wavefront {pi}σ−1. In this way, the detection is an iterative
search based on the previous neighborhood, which roughly
simulates the propagation process of the wave equation. The
initial neighbors L(pi)1 or wavefront {pi}1 can be directly
extracted from adjacency based on the Laplace graph. An
example is shown in Fig. 3.

It is worth noting that the quality of L(pi) is affected
by the point cloud density. Non-uniform densities take
anisotropic neighbors that reduce the performance of our
detection. To address this challenge, we implement the
isotropic simplification [30] before the neighbor detection.
Such pre-processing has two advantages. First, the number
of L(pi)1 is clear (i.e., |L(pi)1| ≈ 6) in an isotropic point
cloud, which is guaranteed by the equilateral relationships
between neighbors. Second, the isotropic property makes
the iterative searching close to geodesic computation while
avoiding complex weight calculations [31]. The reason is
that the weights between the point and its neighbors in an
isotropic point cloud can be represented by the distance

Algorithm 1: DIN Detection
Input : Raw Point cloud P with σ
Output: L(p)σ for each point
1 Pre-processing P with n points by [30]
2 Adjacent neighbor detection for each point by

KNN, k = 6
3 Initial Laplace adjacency matrix Lg(P ) for P , the

scale of the matrix is n× n. All values of Lg(P )
are assigned zero.

4 if points pi and pj are adjacent points according
to the adjacent neighbor detection result, set
Lg(P )ij = 1 and Lg(P )ji = 1,

5 for pi ∈ P do
6 for h ∈ σ do
7 Search {pi}h by Eq.3 with Lg(P )
8 Add {pi}h into L(pi)σ

9 Achieve L(p)σ for each point

Fig. 4. Comparisons between KNN-based neighbors (A) and DIN-based
neighbors (B). KNN-based neighbors cover some unrelated regions that
reduces the accuracy for local region representation. The DIN-based
neighbors represent more adjacent geometric details according to the
manifold constraint.

directly. The update of σ explicitly reflects the distance
change. Based on the above algorithmic considerations, we
present the implementation details for DIN detection in
Algorithm 1.

Using different values of σ, we can extract multi-scale
intrinsic neighborhoods useful for subsequent feature learn-
ing. For deep network training, the number of neighbors
should be controlled by a uniform value. To implement the
accurate control, we search the neighbors (L(pi)σ) according
to the σ. Once the point number of L(pi)σ is larger than
the specified value, the searching process stops. We ran-
domly delete some points from the latest wavefront {pi}σ
to achieve neighbors with the uniform value. As shown in
Fig.4, the DIN-based neighbors are better than KNN-based
neighbors for local implicit surface modeling. In practice,
we specify the multi-scale number σ = {3, 4, 5} to define
the neighborhoods. According to the different values of σ,
we estimate the related neighbor point numbers {40, 64, 96}
as the uniform values for related L(pi)σ .
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3.3 Intrinsic Shape Descriptor
To describe the sharp feature, a proper local shape operator
is useful. It can be regarded as a kind of formulation for
geometric information of the local region, as presented in
Eq. (6). In the previous section, we show that the KNN-
based neighbors cannot provide accurate local implicit sur-
face modeling (ref. Fig. 4), which degrades the performance
of related local shape operators. We propose the following
intrinsic shape descriptor as a new local shape operator.
Benefited from the intrinsic neighbors, the intrinsic shape
descriptor is consistent with the manifold constraint, which
provides a more accurate formulation for the local geometric
structure. It inherits the advantages of intrinsic neighbor-
hoods and achieves a good trade-off between manifold
consistency and computational efficiency.

Basically, the intrinsic shape descriptor is a normal-
vector-based shape operator consisting of a set of cosine val-
ues based on normal intersection angles. The cosine value
can be regarded as a simple discrete curvature related to the
mean curvature. The computation of its value is formulated
as

CNCpi
= cos(Npi

, Npj
), (4)

where CNCpi
represents the cosine normal curvature of

point pi, pj is one of the intrinsic neighbor points of pi, Npi

is the normal vector of pi, and Npj
is the normal vector of

pj . We compute the absolute cosine value of the intersection
angle between the normal vectors, which can be regarded
as a concise encoding for the local implicit surface. Since
normal estimation has a crucial impact on the calculation of
the descriptor, we employ the advanced normal calculation
method Multi-Scale Fitting Patch Selection (MFPS) [32] to
estimate normal vectors.

Even if we obtain accurate normal vectors in local re-
gions, they are not globally oriented, which reduces the
performance of the related shape descriptor. Without global
orientation, the normal vectors may generate conflicting
shape descriptors. As shown in Fig.5, the normal vector
of points B and C will point towards different directions.
This will result in a sudden change in the cosβ, causing
the classifier to falsely detect a sharp change in the normal
direction, which contradicts the fact that the curve is smooth
and continuous at that point. For the curve (B, C), an angle
γ between the negative normal vector of B and the normal
vector of C should reflect the change in the normal direction
of this curve correctly. Inspired by Sharpness fields [17], we
use the absolute value of cosine to represent the normal
vector-based curvature. Fortunately, the absolute values of
cosine from these two formulations are the same, shown as

| cosβ| = | cos γ|, (5)

where β, and γ represent intersections in the above two
formulations, and they have the same absolute value of
cosine that can be used to represent normal-vector-based
curvature. Based on the above reason, we define the new
representation of CNC, formulated as

CNCpi
= |cos(Npi

, Npj
)|. (6)

Once the computation of CNC is provided, the intrinsic
shape descriptor can be established. The descriptor is a set
of CNCs extracted from the intrinsic neighborhood L(pi)σ .

A B C
D

Fig. 5. Instance of normal vectors. α is the angle between the normal
vectors of A and B; β is the angle between the normal vectors of B
and C; γ is the angle between the negative normal vector of B and the
normal vector of C.

It can be regarded as a concise representation of the local
region, similar to fast point feature histograms (FPFH) [33].
The advantages of the descriptor include convenient se-
rialization, orientation independence, and facilitating the
established quantitative analysis. Even if the descriptors
indicate rough geometric features, their advantages are still
important for subsequent training tasks. With the intrinsic
shape descriptor, we can use a simple network structure
as presented in Section 3.4 to learn an accurate and robust
sharp feature model.

3.4 Multi-Scale Laplace Network

Due to the inherent diversity of point clouds, different types
of sharp features have significantly different characteristics.
To formulate the sharp features, suitable neighborhoods
need to be detected to achieve local shape analysis. In
some traditional solutions, the neighborhood scale is fixed,
which may reduce the flexibility for sharp feature learning.
Considering the successful application of shifted window
techniques in the field of image processing [34], we propose
the multi-scale Laplace network (MSL-Net) as the learning
model. It is a multi-channel deep network constructed by
several MLP layers and a weighted average pooling module
for final probability estimation. Each channel corresponds
to a specified scale that simulates the shifted window across
the image. Collecting all features from different channels,
the MSL-Net can estimate the probability of sharp feature
judgment. Benefited from the multi-scale analysis, the esti-
mation is more accurate than single-scale networks.

Multi-Scale Input. As aforementioned, we can use CNC
to describe the local shape feature. For MSL-Net training,
the multi-scale input is based on the collected CNC with
different scales of intrinsic neighborhoods. It is represented
as

MSLNinput = {MSLNσ1 , ...,MSLNσf
}, σ1 < ... < σf , (7)

MSLNσ = {CNCpj
|pj ∈ L(pi)σ}, (8)

where the MSLNσ is a set of CNC extracted from the intrinsic
neighborhood L(pi)σ . For each point in the cloud, we estab-
lish the MSLNinput with different values of σ. In practice,
we specify the channel number f = 3. As mentioned in Sec.
3, we can specify an accurate number of neighbor points by
deleting some points to control the number in the range of
(|L(pi)|, |L(pi)σ−1|). Then, we can specify MSLNσ with a
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Fig. 6. MSL-Net Architecture. It can be regarded as a multi-channel
classification network for sharp feature detection. As the input fea-
ture, the multi-scale input includes three CNC-based vectors that have
been serialized. The three vectors are respectively inputted into three
channels and transformed by a series of MLP layers. Then, the MSL-
Net obtains three feature vectors of reduced dimensions. Finally, the
classification is implemented based on the vectors by average pooing.

certain scale convenient for subsequent training. We set the
multi-scales as 40, 64 and 96. The quantitative analysis for
the scale selection is provided in Section 4.

Serialization. The disorder problem should be solved
for point cloud-based deep learning. The classical solution is
to implement max pooling [35] for the feature vector. How-
ever, such implementation neglects more geometric details.
Therefore, we implement the serialization to solve the prob-
lem. We consider two kinds of serialization, which include
CNC-based and Euclidean distance-based serializations. For
the first one, the input CNC-based feature vector is sorted
based on their values. It can be regarded as a statistical anal-
ysis according to the curvatures in the related DIN region.
Such serialization lost the local spatial correspondence to
achieve better robustness for non-uniform densities. The Eu-
clidean distance-based serialization keeps the local spatial
correspondence to a certain degree. However, it is sensitive
to the density. Compared to the max pooling, the Euclidean-
distances-based serialization preserves more geometric in-
formation. Although the serialization disrupts the accurate
point-based correspondence of CNC values according to the
σ, it still has significant statistical significance and keeps
rough correspondence. Some details are discussed in Section
4.4.

Network Architecture. The proposed architecture of
MSL-Net is shown in Fig. 6. The multi-scale input vectors
extracted from intrinsic neighborhoods with three scales are
inserted into their corresponding channels. Inspired by the
PointNet [35], MLP layers are used to perform dimension
expansion and reduction on the CNC-based feature vectors.
Each MLP layer can be regarded as a cross-analysis of the
CNC-based neighborhood for a point, which represents the
statistical shape feature. Since the initial vector has already
been serialized, there is no need to use a max pooling layer
when reducing the dimension of features, which maximally
preserves the geometric features in the training data. Finally,
we obtain three vectors whose dimensions have been re-
duced.

Probability Estimation. Based on the output feature
vectors from the three channels, we estimate the probability
of sharp feature judgment. A weighted average pooling

0.0

0.25

0.5

0.75

1.0

Fig. 7. Visualizations of sharp feature probability estimation by color
maps.

module is used to combine the three vectors into a single
one. The probability estimation is implemented based on
the combined feature vector. In this paper, the MSL-Net
classification threshold is set to 0.6. The judgment threshold
of probability is trained to fit the training data, which
can also be regarded as the output score for sharp feature
estimation. Once the threshold is set, the construction of
MSL-Net is completed. To facilitate a clear illustration of
the relationship between probability estimation and sharp
features, we visualize the probabilities by color maps as
shown in Fig.7. It is clearly observed that the probability
estimation successfully quantifies sharp features.

Loss function. The loss function uses the cross-entropy
function to implement binary classification of the network,
which is represented as

Loss = −
q∑

i=1

yi log(
∧
yi ), (9)

where yi represents the conditional probability of any input
being a sharp feature point,

∧
yi represents one-hot label vec-

tor, and q represents the number of classification categories.
In Section 4, we evaluate the performance of MSL-Net and
the functions of its modules.

4 EXPERIMENTS

We evaluate the performance of MSL-Net in this section. All
experiments are run on the computer equipped with AMD
Ryzen 7 5800H, 16GB RAM, RTX3060, and with windows
11 as its running system and pycharm as the development
platform. The learning rate of the network is set to 10−4, and
the optimizer is selected for Adam for model optimization
iteration. The experiments include the following parts: 1)
we explain the basic introduction to the ABC dataset; 2) we
introduce the selected quantitative analysis tools for quality
measurement of sharp feature detection; 3) we discuss the
ablation study for the MSL-Net to demonstrate the effects of
different modules and parameters; 4) we provide a compre-
hensive analysis with existing limitations.

4.1 ABC Dataset
We conducted experiments on ABC Dataset [36] that
is widely used in sharp feature estimation. The ABC
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TABLE 1
Seven datasets were used to compare the performance of different

sharp feature detection methods.

As selected subset of ABC with more accurate sharp features with 1000 point clouds
Aall original ABC with 1500 sets of data
Ag As add Gaussian noise with 0.12% noisy intensity
Ag2 As add Gaussian noise with 0.2% noisy intensity
Ag3 As add Gaussian noise with 0.3% noisy intensity
Sparse 1000 models from the ABC [36] dataset and implement down-sampling [37]
Real 125 real scanning point clouds provided by reference [3]

A B
Model Sharp Features Model Sharp Features

B
Point Cloud Point Cloud

Fig. 8. Visualizations of sharp feature labels of point clouds from the
ABC dataset. The blue labels represent the ground truth of sharp
features provided by the ABC dataset. The red labels represent the
sharp features that are not labeled as the ground truth. It means that
the ground truth labels of the ABC dataset have flaws.

dataset [36] is collected with one million computer-aided
design (CAD) models for research of geometric deep learn-
ing and related applications. Each model is established by
parametrized curves and surfaces that provide ground truth
for geometric feature detection. The surfaces mainly include
planes, cylinders, cones, spheres, torus, surface of revolution
or extrusion, and NURBS patches [38]. The parametrized
curves mainly include lines, circles, ellipses, parabolas, hy-
perbolas, or NURBS curves [38]. In this paper, we consider
the parametrized curves of the CAD model as its sharp
features.

The formats of the dataset include various types, includ-
ing step, parasolid, yml, stl, obj, etc. Using files with original
parameter representations (step, parasolid) makes it diffi-
cult to construct large training datasets because boundary
representation (B-Rep) requires the use of off-the-shelf geo-
metric kernels (Open Cascade [39]), which is not designed
for batch processing. To avoid these issues, we use yml
files for sharp feature extraction. The yml files include the
type of parametrized curve that is a kind of sharp feature
representation and the index of each curve corresponding
to its points. With the curve-based sharp feature labels, we
can classify the point cloud into two types: sharp points and
normal points.

Due to the fact that the CAD models in the ABC dataset
are automatically generated, the sharp feature ground truth
provided by the ABC dataset is not comprehensive, as
shown in Fig. 8. Some sharp points are not labeled, which
leads to defects in the ground truth calibrated based on the
parametrized curves. In order to establish more convincing
experimental tests, we selectively extract a subset from
the ABC dataset with accurate labels. The test results are
reported based on the subset and the original one at the
same time.

On the ABC dataset, all point cloud models are noise-free
with relatively uniform distributions. The training dataset
is collected by 100 models with clear edges of different
types (straight lines, spline curves, circles, etc.) from the

ABC dataset. We also add Gaussian noise with an intensity
of 0.12% times the diagonal length to extend the diversity.
During the training process, it is necessary to consider the
ratio of positive and negative samples. The reason is that
the proportion of positive edge points is lower in general.
Without the sample balance, the training process will be
biased towards more negative points or normal samples.
We select all edge points as positive samples and randomly
choose normal points as negative ones from models.

We have conducted performance tests on seven datasets,
which include As(selected subset of ABC with more accu-
rate sharp features with 1000 point clouds), Aall(original
ABC with 1500 sets of data), we adopt a Gaussian distri-
bution with a mean of 0.12%, 0.2% and 0.3% of the diagonal
length of the bounding box and a standard deviation of one
to generate N (number of points) random numbers for the
X , Y , and Z axes, respectively. Then, we add the random
numbers to the point cloud coordinates to generate a point
cloud with Gaussian noise. Ag , Ag2, Ag3(As add Gaussian
noise with 0.12%, 0.2%, 0.3% noisy intensity respectively),
sparse point clouds(we extract 1000 models from the ABC
[36] dataset and implement down-sampling [37]), and real
point clouds(we collect 125 real scanning point clouds pro-
vided by reference [3]. Such point clouds are achieved from
3D models of ABC data with 3D printer and scanner), the
test dataset as shown in Table 1. In the following parts, we
report the performance of sharp feature detection based on
the test sets.

4.2 Metrics

Geometric Consistency. To evaluate the performance of
sharp feature detection, we need a set of quantitative analy-
sis tools to provide metrics. Here we use DP , DG and Dmean

to represent the geometric consistency between the detected
results and the ground truth.

DP =
1

|P ′ |
∑

pi∈P ′
dmin(p

′
i, G), (10)

DG =
1

|G|
∑
gi∈G

dmin(gi, P
′
), (11)

where DP represents error of minimum distance from de-
tected sharp point p

′
i to the ground truth G, |P ′ | is the num-

ber of sharp points. Correspondingly, DG is the error from
ground truth point gi to the P

′
. Both evaluation indicators

can reflect the effectiveness of sharp feature detection to a
certain extent. However, there are some limitations: if there
are fewer detected edge points, DP is lower unreasonably.
For instance, if the model only detects one single correct
edge point, the value of DP is zero,

∑
pi∈P ′ dmin(p

′
i, G) = 0.

Similarly, if there are redundant detected edge points, the
value of DG is unreliably higher. To mitigate the impact of
the two extreme cases, we calculated the mean of DP and
DG,

Dmean =
DP +DG

2
, (12)

It is used to avoid bias in classification and provide a bal-
anced measurement for the geometric consistency of sharp
features. The details are discussed in the next subsection.
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Ours Ground TruthDEF-NetPIE-NetShF VCM EC-Net Point Cloud

Fig. 9. Comparisons of different sharp feature detection methods. ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3].

Ours Ground TruthDEF-NetPIE-NetShF VCM EC-Net Point Cloud

Fig. 10. Comparisons of different sharp feature detection methods (ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3]) for noisy point clouds.
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Fig. 11. Real-World scanning point cloud.

ShF

VCM

EC-Net

Ours Ground Truth

PIE-NetDEF-Net

Point Cloud

Fig. 12. Comparisons of different sharp feature detection methods for
real-world point clouds. ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-
Net [3].

Classification Accuracy.To reveal a more intuitive per-
formance for sharp feature detection, we also employ some
traditional metrics for classification measurement, including
the percentage of classification accuracy, recall, and FPR
(False Positive Rate). Such metrics are used to estimate the
sharp point judgment directly.

The sharp feature detection is a binary classification task
(classify sharp points and normal points). Therefore, some
classical classification indexes can be employed to estimate
the accuracy, which includes accuracy, recall, FPR, and ROC
(Receiver Operating Characteristic) curves. The classifica-
tion accuracy can be directly counted by the percentage of
correct classification of sharp points and normal points. To
evaluate the overall performance of network classification,
we use accuracy as a quality assessment metric, as shown in
Eq.13.

Accuracy =
TP + TN

N
, (13)

where TP (True Positives) is the number of cases where
the actual value is positive and the predicted value is also
positive, TN (True Negatives) is the number of cases where
the actual value is negative, and the predicted value is also
negative, and N is the total number of samples.

In order to measure whether the sharp points are cor-
rectly predicted, we use the recall rate as an indicator. The
recall rate with a higher value means that the method is

ShF

VCM

EC-Net

Ours Ground Truth

PIE-NetDEF-Net

Point Cloud

Fig. 13. Comparisons of different sharp feature detection methods
(ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3]) for sparse point
clouds.

Fig. 14. Visualizations of quantitative metrics for different methods. First
column: classification accuracy results of different methods; second
column: geometric consistency metrics of different methods.

sensitive to the sharp feature. The calculation of the recall
rate is shown in Eq.14

Recall =
TP

(TP + FP )
, (14)

where FP (False Positives) is the number of cases where the
actual value is negative but the predicted value is positive.
To measure the insensitivity of the method for normal
points, we use FPR as another indicator. The lower the FPR,
the fewer normal points are misjudged as sharp points. The
calculation of FPR is shown as

FPR =
FP

(TN + FP )
. (15)

4.3 Comparisons
Experimental Comparisons with Different Methods. We
compare the sharp feature detection performance of differ-
ent methods based on the seven test sets. The mentioned
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Ours
VCM

Ours
VCM

ROC on sA ROC on gA

Fig. 15. Visualizations of ROC for Ours and VCM methods.

TABLE 2
Quantitative metrics of different sharp feature detection methods based

on the test set As.

Methods DP DG Dmean Accuracy Recall FPR

VCM [1] 0.0010 0.0490 0.0250 78.1 92.4 23.1
ShF [17] 0.0133 0.0589 0.0361 67.7 93.7 34.8
EC-Net [4] 0.0233 0.0422 0.0327 90.3 56.0 6.10
PIE-Net [21] 0.0263 0.0483 0.0373 71.9 79.1 29.3
DEF-Net [3] 0.0089 0.0338 0.0213 92.8 83.2 5.52

MSL-Net 0.0122 0.0315 0.0218 91.2 85.2 14.1

metrics are used to measure the related indexes of the
detection methods, which contain geometric consistency,
classification accuracy, and noisy robustness. The com-
parison methods include sharpness fields-based detection
(ShF) [17],Voronoi-based feature estimation (VCM) [1], DEF-
Net [3], PIE-Net [21] and EC-Net [4] that cover the main-
stream technology solutions. In Tables 2∼4, the estimated
results based on the mentioned indexes are reported. It is
clear that our method achieves more accurate classification
results. In Fig. 14, more intuitive histograms are visualized
to represent the advantage of our method in classification.
As MSL-Net and VCM provide threshold parameters, we
can extract different numbers of sharp feature points by set-
ting different thresholds. However, EC-Net and ShF cannot
manually set threshold parameters, so we only compared
the ROC curves of MSL-Net and VCM in Fig. 15. Some
instances are visualized in Figs. 9 and 10. Even in the
presence of noise interference, our method is still able to
better detect sharp points.

Experiments on Sparse Point Clouds. In order to gen-
erate sparse point clouds, we extract 1000 models from the
ABC [36] dataset and implement down-sampling [37]. The

TABLE 3
Quantitative metrics of different sharp feature detection methods based

on the test set Ag .

Methods DP DG Dmean Accuracy Recall FPR

VCM [1] 0.0310 0.0590 0.0450 34.6 68.3 58.1
ShF [17] 0.0341 0.0514 0.0427 67.1 58.2 32.6
EC-Net [4] 0.0241 0.0434 0.0337 85.2 54.2 8.90
PIE-Net [21] 0.0189 0.0587 0.0388 53.9 75.7 39.8
DEF-Net [3] 0.0359 0.0694 0.0526 93.8 0.96 0.17

MSL-Net 0.0135 0.0423 0.0279 88.5 84.2 16.8

TABLE 4
Quantitative metrics of different sharp feature detection methods based

on the original ABC dataset Aall.

Methods DP DG Dmean Accuracy Recall FPR

VCM [1] 0.0103 0.0591 0.0347 73.1 87.3 30.7
ShF [17] 0.0172 0.0624 0.0398 66.7 90.1 38.9
EC-Net [4] 0.0264 0.0502 0.0383 82.1 53.9 10.2
PIE-Net [21] 0.0279 0.0512 0.0395 68.6 77.1 35.7
DEF-Net [3] 0.0127 0.0397 0.0262 90.7 78.3 6.78

MSL-Net 0.0136 0.0529 0.0332 83.4 80.9 16.3

TABLE 5
Quantitative metrics of different sharp feature detection methods based

on real scanned point clouds.

Methods DP DG Dmean Accuracy Recall FPR

VCM [1] 0.0098 0.0196 0.0147 82.6 86.9 22.3
ShF [17] 0.1348 0.0007 0.0677 15.7 94.6 89.7
EC-Net [4] 0.0083 0.0154 0.0118 86.9 78.1 13.8
PIE-Net [21] 0.0257 0.0438 0.0347 72.9 56.7 21.8
DEF-Net [3] 0.0473 0.0531 0.0502 58.3 21.7 14.4

MSL-Net 0.0111 0.0166 0.0138 84.8 40.4 6.79

point number is controlled to 10,000. The sharp feature de-
tection results are shown in Fig.13 with quantitative analysis
in Table 6. Results demonstrate that both DEF-Net and our
method yield favorable results on sparse point clouds. Due
to the detection of neighborhoods in Euclidean space, ShF
produces more errors on sparse point clouds. It is important
that our method implements feature detection on simplified
models directly. The DEF-Net performs slightly better per-
formance than our method, which benefits from the input
point cloud with clean and uniform distributed points. As
shown in Fig.12 and Fig.10, we prove that the DEF-Net
notably under-performs our method on non-uniform and
noisy models. Despite employing up-sampling during edge
detection, EC-Net still overlooks a considerable number of
edge points. Similarly, the PIE-Net and VCM methods ex-
hibit inferior performance in edge point detection compared
to our method.

Experiments on Different Levels of Noisy Point
Clouds. We have conducted comparative experiments with
different levels of noise (0.12%, 0.2% and 0.3%), which are
reported in Tables 7 and 8. Among the evaluation indicators,
Recall represents the accuracy of positive edge point detec-
tion in total proportion. On the contrary, FPR refers to the
false positive proportion in the detection. The two metrics
should be combined to evaluate the performance of sharp
feature detection. For VCM, ShF, and PIE-Net, the related
values of FPR are higher, which means these methods tend
to extend the edge points in regions with sharp features.
For DEF-Net, its recall is lower than others, which means
it considers more points to be normal points and neglects
real edge points. The EC-Net achieves a relatively balanced
result. However, its recall value is significantly lower than
our method. The reason is that our method adopts a more
aggressive recognition strategy. It helps to identify more
edge points in the sharp feature region. Overall, our method
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TABLE 6
Quantitative metrics of different sharp feature detection methods based

on sparse point clouds

Methods DP DG Dmean Accuracy Recall FPR

VCM [1] 0.0243 0.0376 0.0309 78.1 79.6 21.7
ShF [17] 0.0257 0.0435 0.0346 73.8 80.3 25.3
EC-Net [4] 0.0127 0.0478 0.0302 79.6 81.7 14.9
PIE-Net [21] 0.0278 0.0369 0.0323 70.2 77.3 31.5
DEF-Net [3] 0.0129 0.0365 0.0247 85.1 88.7 13.7

MSL-Net 0.0134 0.0389 0.0261 82.9 90.8 23.5

TABLE 7
Recall of different method based on the different levels of noisy model.

Levels 0.12% 0.2% 0.3%

VCM [1] 68.3 71.5 72.1
ShF [17] 58.2 67.1 81.3
EC-Net [4] 54.2 53.9 53.0
PIE-Net [21] 75.7 74.1 73.4
DEF-Net [3] 0.96 0.78 0.77

MSL-Net 84.2 84.8 82.1

achieves better sharp feature results with more stable per-
formance.

Experiments on Real Scanning Point Clouds. We collect
125 real scanning point clouds provided by reference [3].
These point clouds are achieved from 3D models of ABC
data with a 3D printer and scanner. In Fig.11, our method
predicts edge points that are closest to the ground truth.
Due to the sparsity and non-uniformity of the scanned point
clouds, as shown in Fig.12, calculating the neighborhood
in Euclidean space for ShF produces more errors. In com-
parison, our method uses intrinsic neighborhood detection,
which effectively improves the accuracy of detection. The
real scanning point clouds contain more random noisy
points. The performance of DEF-Net is reduced for noisy
point clouds, which are proved in Table 3. Benefiting from
up-sampling, EC-Net can achieve better results. However, it
is sensitive to the point distribution that has been proved
in Table 6. Our method achieves a balanced scheme with a
more stable performance.

TABLE 8
FPR of different method based on the different intensity of noisy model.

Levels 0.12% 0.2% 0.3%

VCM [1] 58.1 62.1 63.4
ShF [17] 32.6 38.1 42.6
EC-Net [4] 8.90 9.34 9.67
PIE-Net [21] 39.8 41.7 42.3
DEF-Net [3] 0.17 0.14 0.13

MSL-Net 16.8 18.7 22.6

TABLE 9
Quantitative metrics of MSL-Net with different normal calculate

methods on As.

Methods DP DG Dmean Accuracy Recall FPR

PCA [40] 0.0131 0.0462 0.0296 86.1 82.0 19.4
Deepfit [41] 0.0289 0.0512 0.0400 82.4 79.5 23.1
NH-Net [32] 0.0163 0.0405 0.0284 78.4 80.1 29.1
MPFS [32] 0.0122 0.0315 0.0218 91.2 85.2 14.1

4.4 Ablation study

In this part, we evaluate the function of each module
in MSL-Net to verify the rationality of its structure. The
modules include normal estimation, neighbor detection,
structure of multi-scale, and serialization processing.

Normal Estimation. To achieve the intrinsic shape de-
scriptor, normal estimation is necessary for MSL-Net train-
ing. We compare the performance of different normal es-
timation methods, including PCA-based estimation [40],
MFPS [32], DeepFit [41], and NH-Net [32]. The quantitative
analysis results are shown in Table 9. It can be seen that
MFPS helps to detect more accurate sharp points while
ensuring the stability for judgment of normal points as
much as possible. In comparison, other methods are more
sensitive to non-uniform densities. Therefore, the normal
estimation of MSL-Net is implemented by MFPS in practice.

Neighbor Detection. As an important module of MLS-
Net, the DIN detection extracts intrinsic neighbors to repre-
sent local shape features. It is completely different from the
traditional KNN detection that has been shown in Fig. 4. The
improvement of the DIN detection should be evaluated. We
compare the performance of MLS-Net with KNN detection.
In Table 10, the geometric consistency and classification
accuracy results are shown. It is clear that DIN detection
significantly improves the performance of sharp feature
detection.

Multi-Scale Structure. Different scales of DIN also take
influence for MSL-Net. To reveal the relationship between
the scale and the sharp feature detection, we select different
k values (8, 40, 64, 96) in DIN detection to compare the
performance. The results are also reported in Table 10. It
reveals that the smaller scale of DIN tends to reduce the
sharp points. On the contrary, the larger scale predicts more
sharp points around the ground truth. The two conditions
explain that the multi-scale DIN is to avoid the two ex-
treme situations and balance the accuracy and robustness.
In Fig. 17, we visualize the sharp feature detection results
by MSL-Net with different scales of DIN. Compared to
the single-scale DIN, the multi-scale DIN achieves more
accurate and robust sharp features.

The Multi-Scale Grouping (MSG) module used in Point-
Net++ and the multi-scale network used in MSL-Net share
similar ideas for local geometric feature learning. The differ-
ence is that the MSG module shares the learning parameters
in the network with one branch and MSL-Net trains the
independent parameters in related channels with corre-
sponding scales. Obviously, the multi-channels improve the
accuracy and robustness for detection, which have been
proven in ablation, as shown in Fig.17 and Table 10. MSG
is a module for calculating multi-scale neighborhoods in
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Fig. 16. Comparison of different normal estimation methods.
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Fig. 17. Visualizations of sharp features detected by MSL-Net with
different kinds of neighbors and related scales.

Euclidean space, which is equivalent to the KNN Multi-
Scale module in the paper. From Table 10, it can be observed
that the use of DIN significantly outperforms MSG in most
indicators.

Serialization. The disorder problem should be solved
for point cloud-based deep learning. The classical solution
is to implement max pooling [35] for the feature vector.
However, such implementation neglects more geometric
details. Therefore, we implement the serialization to solve
the problem. Two kinds of serialization can be used, which
include CNC-based and Euclidean distance-based serializa-
tions. For the first one, the input CNC-based feature vector
is sorted based on their values. It can be regarded as a
statistical analysis according to the curvatures in the related
DIN region. Such serialization lost the local spatial cor-
respondence to achieve better robustness for non-uniform
densities. The Euclidean distance-based serialization keeps
the local spatial correspondence to a certain degree. How-
ever, it is sensitive to the density. To show the performance
of the two serializations, we report the quantitative analysis
results in Table 11. In Fig. 18, two instances are used
to visualize the difference between the two serializations.
The results demonstrate that local spatial correspondence is
more important for sharp feature learning.

4.5 Comprehensive Analysis
It has been proved that our method achieves more accu-
rate and robust results for sharp feature detection tasks.
Especially for noisy point clouds, the multi-scale structure
of MSL-Net with DIN can achieve more effective feature
estimation that fully considers the local surface property

Fig. 18. Visualizations of different serialization methods, Left: CNC-
based serialization; right: Euclidean distance-based serialization

TABLE 10
Quantitative metrics of MSL-Net with different neighbor regions on As.
KNN: k-nearest neighbors based on Euclidean distance; DIN: discrete

intrinsic neighbor.

Neighbor DP DG Dmean Accuracy Recall FPR

KNN k=40 0.0193 0.0315 0.0254 89.3 69.9 7.8
KNN k=64 0.0132 0.0535 0.0333 82.3 82.7 17.7
KNN k=96 0.0113 0.0576 0.0344 81.5 84.6 26.1
DIN k=8 0.0217 0.0281 0.0249 87.1 79.5 6.1
DIN k=40 0.0145 0.0311 0.0228 89.9 85.1 14.0
DIN k=64 0.0132 0.0335 0.0233 89.4 85.4 14.6
DIN k=96 0.0124 0.0381 0.0252 86.1 86.0 18.4

KNN Multi-Scale 0.0110 0.0540 0.0325 82.6 82.8 17.0
DIN Multi-Scale 0.0122 0.0315 0.0218 91.2 85.2 14.1

and statistical shape feature in larger regions. It has been
shown that a multi-scale structure is better than a single-
scale structure.

From the comparison results with the SOTA methods
in Sec 4.3, it can be seen that the ShF [17] predicts more
edge points around the regions with sharp features, which
lacks accurate analysis in the local region. For noisy point
clouds, it produces more independent edge points that
violate the continuity of sharp features. For the same reason,
the performance of VCM [1] is significantly reduced for
noisy points. Some negative results are shown in Fig. 10.
The continuity of edge points is not well by EC-Net [4] and
PIE-Net [21], which is affected by the noisy points. As the
SOTA method, DEF-Net [3] can achieve better performance
on point clouds with uniform distribution. However, it is
also sensitive to noisy points and affected by non-uniform
densities, which are proved in Fig.10 and Table 3. Overall,
our method achieves a better balance between robustness
and accuracy.

Even though our method employs multi-scale analysis
and DIN detection, it still has some advantages in compu-

TABLE 11
Quantitative metrics of MSL-Net with different serializations on As.

ED: Euclidean distance-based serialization; CNC: CNC-based
serialization.

DP DG Dmean Accuracy Recall FPR

CNC 0.0139 0.0437 0.0288 87.2 81.5 15.2
ED 0.0122 0.0315 0.0218 91.2 85.2 14.1
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TABLE 12
Time reports of different methods for point clouds

with different point numbers.

Points VCM [1] DEF-Net [3] ShF [17] EC-Net [4] MSL-Net

10,000 2.5s 4.1s 3.0s 5.1s 1.5s
25,000 7.2s 10.3s 7.1s 13.5s 3.1s
50,000 14.5s 20.7s 16.8s 27.4s 6.5s
100,000 30.1s 40.2s 31.9s 55.0s 13.2s

tational efficiency. The DIN detection effectively simplifies
the calculation for intrinsic neighbors. It avoids complex
computations like geodesic searching and Voronoi diagram
construction. We report the time cost of different sharp
feature detection methods in Table 12. For point clouds
with different point numbers, MSL-Net achieves faster com-
putation speed. The reason is that the structure of MSL-
Net is simpler, which facilitates feature learning. It doesn’t
require complex geometric feature-based pre-modulation
and analysis.

Limitations. Although the MSL-Net achieves significant
improvements in sharp feature detection, some limitations
still exist, including normal vector dependency, ambiguity
in sharp point detection on thin surface boundaries, and
sensitivity to non-uniform densities. In Table 9, differ-
ent normal vector estimation methods produce different
performances for sharp feature detection. It means that
our method is sensitive to normal vector estimation. Thin
surfaces increase the difficulty of searching the intrinsic
neighbors. Continuous normal transformation pattern in the
area of the thin surface is difficult to model and recognize.
For the same reason, the non-uniform density has some
potential effects on feature learning. In addition, it reduces
the accuracy of Euclidean distance-based serialization for
CNC. Our method uses isotropic simplification to reduce
the influence as much as possible. However, the influence
can not be eliminated completely.

5 CONCLUSION

We propose an accurate and robust sharp feature detection
method MSL-Net. It extracts DIN from point clouds to
improve the accuracy of local region representation. Based
on the DIN, we design the intrinsic shape operator that
describes the local shape feature while keeping the mani-
fold distribution. With a multi-scale structure, the MSL-Net
learns sharp features from input intrinsic shape operators
extracted from different scales of DIN. The scheme achieves
a balance between local surface property and statistical
shape features. Experiments show that the DIN and multi-
scale structure achieve significant improvement for point
clouds even when there are random noisy points. In future
work, we will employ a new deep learning structure to
handle normal vector dependence problems and improve
the serialization.
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