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MSL-Net: Sharp Feature Detection Network
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Abstract—As a significant geometric feature of 3D point clouds,
sharp features play an important role in shape analysis, 3D re-
construction, registration, localization, etc. Current sharp feature
detection methods are still sensitive to the quality of the input
point cloud, and the detection performance is affected by random
noisy points and non-uniform densities. In this paper, using the
prior knowledge of geometric features, we propose a Multi-scale
Laplace Network (MSL-Net), a new deep-learning-based method
based on an intrinsic neighbor shape descriptor, to detect sharp
features from 3D point clouds. First, we establish a discrete in-
trinsic neighborhood of the point cloud based on the Laplacian
graph, which reduces the error of local implicit surface estimation.
Then, we design a new intrinsic shape descriptor based on the
intrinsic neighborhood, combined with enhanced normal extrac-
tion and cosine-based field estimation function. Finally, we present
the backbone of MSL-Net based on the intrinsic shape descriptor.
Benefiting from the intrinsic neighborhood and shape descriptor,
our MSL-Net has simple architecture and is capable of establishing
accurate feature prediction that satisfies the manifold distribution
while avoiding complex intrinsic metric calculations. Extensive ex-
perimental results demonstrate that with the multi-scale structure,
MSL-Net has a strong analytical ability for local perturbations of
point clouds. Compared with state-of-the-art methods, our MSL-
Net is more robust and accurate.

Index Terms—Sharp feature, 3D point cloud, intrinsic neighbor,
multi-scale Laplace network.
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I. INTRODUCTION

W ITH the development of 3D scanning technology, 3D
point clouds are widely collected and gradually becom-

ing one of the most popular data representations in 3D vision
tasks. As an important geometric feature in 3D point clouds,
sharp features are useful in various applications, including 3D re-
construction, localization, registration, visualization, etc. From
the perspective of manifold distribution, sharp features describe
the areas in point clouds where the curvature changes abruptly
or discontinuously. Such property supports precise semantic
feature descriptions for calculations in reconstruction and lo-
cation. In embedding spaces, compared to other regions, sharp
features can represent more prominent geometric details while
conforming to human subjective perception in visualization,
as shown in Fig. 1. Therefore, sharp feature detection is an
important task in point-cloud-based analysis.

To detect sharp features, some geometry-based rules are used
to guide the detection framework in traditional solutions [1], [2].
For instance, the edge with sharp features shows the rapid change
of normal-vector-based angles in the local region. Once such
rules are formulated quantitatively, the detection can be pro-
cessed by algorithms. Some local shape descriptors, such as nor-
mal vectors and curvatures, provide measurement tools. How-
ever, the quality of scanned point clouds from real scenes can
not support accurate local-region-based analysis and geometric
feature extraction. Limited by the performance of scanning
devices, randomly noisy points and non-uniform densities in
different regions are unavoidable, which have an unpredictable
impact on sharp feature detection.

Following the development of deep learning technologies,
some researchers propose learning-based frameworks [3], [4] to
improve performance. Such frameworks fully utilize the feature
learning ability of deep neural networks to extract structured
knowledge from training datasets. Then, more complex se-
mantic information establishes efficient and robust sharp fea-
ture detection rules. However, the local neighbor detection of
these methods does not often follow the manifold constraints,
which reduces the detection performance. I.e., these methods
focus more on overall edge accuracy but are less sensitive
to the local geometric features. Furthermore, the performance
of these methods is affected by nonuniform point distribu-
tion and noisy points. Therefore, most current deep learning
methods cannot achieve stable, accurate, and robust sharp
extraction.
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Fig. 1. Instance of shape feature detection for Joint model.

To solve the above challenges, we propose a novel point-
cloud-based sharp feature detection method, MSL-Net, combin-
ing traditional geometric analysis and deep learning. It includes
three core parts: discrete intrinsic neighbor (DIN) detection,
intrinsic shape operator, and multi-scale Laplace network. The
DIN detection aims to search intrinsic neighbors under the
geodesic distance metric according to the manifold constraint.
It has been shown that the intrinsic neighbors can improve
local region representation [5]. The intrinsic neighbors reduce
the probability of misidentifying points with small euclidean
distances produced by sharp curvature changes. Based on the
intrinsic neighbors, we present an intrinsic shape operator to
describe local shape features. This operator makes full use of
the geometric homogeneity of the intrinsic neighbors, combines
with the cosine field positioning function to provide accurate
and robust feature representation based on normal vectors, and
improves the sensitivity to sharp features. Finally, we design the
backbone of MSL-Net to learn the rules of sharp features with
different conditions. With the help of intrinsic neighbors and
operators, MSL-Net can be quickly converged. Benefiting from
the intrinsic neighborhood and shape descriptor, our proposed
MSL-Net has a simple architecture, only requires a few MLP
layers while significantly improving the detection accuracy and
robustness. The overall pipeline is shown in Fig. 2. The main
contributions of the paper are as follows:
� We present a discrete intrinsic neighbor detection for point

clouds. It improves the accuracy of neighbor detection
without complex geodesic computation and Voronoi-cell-
based analysis.

� We propose an intrinsic shape operator to describe the
local shape feature. The operator fully considers normal
vector distributions based on the intrinsic neighbors. It
provides accurate representations for geometric details,
making subsequent feature analysis easy.

� We design a multi-scale Laplace network to learn the sharp
features from intrinsic shape operators. The network has
a multi-channel structure for feature learning in different
scales of local regions. It supports accurate sharp fea-
ture detection and improves the robustness of noisy point
clouds.

The rest of this paper is organized as follows. In Section II,
we summarize representative methods for sharp feature detec-
tion. In Section III, we describe the design of DIN detection.
The intrinsic shape operator and backbone of MSL-Net are
introduced in Sections IV and V, respectively. We evaluate the

performance of our method and present the comparisons with
different measurements in Section VI. Finally, we conclude our
work in Section VII.

II. RELATED WORKS

Sharp feature detection methods can be roughly divided
into two classes: local-shape-descriptor-based and data-driven-
based. For the first class, the main idea is to establish the
formulation for the sharp feature based on the related geometric
information represented by local shape descriptors. Such de-
scriptors are often constructed with the aid of normal vectors
or curvatures, which represent the local shape features. For the
second class, the core issue is to train a learning model from the
collected data for sharp feature estimation.

Local-shape-descriptor-based methods attempt to formulate
sharp features based on geometric information. Pauly et al. [6]
proposed a PCA-based multi-scale feature extraction to fit sharp
lines of point-sampled surface. Xia et al. [7] extracted edges by
analyzing the ratio between eigenvalues of local point sets. In
addition to the above methods, which extracted sharp features
from a statistical perspective, more methods extracted features
from a geometric perspective. Lin et al. [8] established the Line-
Segment-Half-Planes (LSHP) structure for point-cloud-based
line segments. Hackel et al. [9], [10] used graph-based methods
for structured edge extraction by extending local sharp feature
detectors through global analysis.

Many works focused on normal features to extract sharp
features. Mérigot et al. [1] utilized normal-vector-based distri-
butions in local Voronoi cells to extract sharp edges from point
clouds. Demarsin et al. [11] employed a first-order segmentation
to extract candidate feature points and reconstructed the sharp
lines by a graph. Li et al. [12] improved normal estimation
for point location in high curvature regions or complex sharp
features, and a similar solution was proposed in [13]. Weber
et al. [14] calculated a Gaussian graph of the samples using
normal vectors, which is used to identify sharp features in
local regions. Zhang et al. [15] proposed a pair consistency
voting scheme to estimate normal vectors while preserving sharp
features.

In summary, the above methods extract local shape descrip-
tors from point clouds without complex semantic analysis and
pre-training. The implementation is relatively concise, and the
performance is stable. However, the accuracy of these methods is
influenced by the quality of point clouds. Once the non-uniform
densities and noisy points have a high proportion in the point
cloud, the extracted local shape descriptors may lose the function
for sharp feature detection.

Data-driven-based methods try to learn the latent features
from training data for sharp feature detection. With the de-
velopment of deep learning, such methods achieved increasing
attention. Based on classic CNN networks, several methods have
been proposed. Feng et al. [16] utilized the U-Net architecture in
combination with attention mechanism for edge point classifica-
tion. Subsequently, they employed bilateral high-pass filtering
to filter the edge points, which can effectively represent the
overall characteristics of the model. Raina et al. [17] proposed
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Fig. 2. Pipeline of our method. Three core components: discrete intrinsic neighbor detection, intrinsic shape operator, and MSL-Net Architecture. The discrete
intrinsic neighbor detection is used to extract intrinsic neighbors for each point. The intrinsic shape operator describes the local shape feature based on the intrinsic
neighbors. The MSL-Net Architecture learns the sharp feature detection model based on the intrinsic shape operators.

a CNN-based structure to predict the sharpness field (ShF) for
edge point classification. In the same way, Himeur et al. [18]
trained a CNN to learn the description of edges and use it to
efficiently detect edges in 3D point cloud. Matveev et al. [3]
also proposed a CNN-based network, DEF-Net, to detect and
enhance edge points. Loizou et al. [19] constructed a graph
convolutional network architecture for parts boundary detection
from point clouds.

A few methods constructed neural networks using point
clouds as input for extracting sharp features. Yu et al. [4]
designed an edge-aware network (EC-Net) based on the up-
sampling framework [20], which sampled the point cloud and
regressed the distance from each point to the edge curve. Wang
et al. [21] proposed an end-to-end learnable network, PIE-Net,
for parametric inference of edges. The network is trained based
on PointNet++ [22] to implement edge and corner point classi-
fication. Zhang et al. [23] proposed a denoising framework with
an encoder and a decoder structure for sharp feature preserving.
Edirimuni et al. [24] designed a deep-learning-based method to
filter point clouds while keeping sharp features. Zhao et al. [25]
enhanced the noisy robustness by estimating displacement vec-
tors according to the training dataset. Zhu et al. [26] employed
the backbone of PointNet++ to encode point features for sharp
feature detection. Himeur et al. [18] proposed to formulate edge
detection as a classification task and utilize neural networks to
learn it. Cherenkova et al. [27] achieved edge point detection
and line fitting through a network to effectively realize clear and
continuous edge classification.

The above mentioned methods fully utilized the advantages
of deep learning to learn sharp features from point clouds.
However, most of them implement feature concentration based
on the euclidean space but not the manifold space. Moreover, the
k-nearest neighbor (KNN) detection extracts unstable neighbor-
hood relations between points in local regions, which reduces the
accuracy for sharp feature detection. In addition, edge extraction
requires both local accuracy and global consistency. It is difficult
to achieve this goal with a single-scale network architecture.

In this paper, we propose a new solution that combines the
advantages of the two classes. It extracts the intrinsic neighbors

to fit the manifold surface and defines the intrinsic local shape
descriptors. Using a multi-scale Laplace network, the descriptors
are further trained to formulate a judgment for sharp features.

III. METHOD

A. Overview

We propose a new discrete intrinsic neighbor (DIN) detection
for point clouds (Section III-B). Based on the intrinsic neighbors,
we present an intrinsic shape operator to describe the local shape
feature (Section III-C). Finally, we design the backbone of MSL-
Net to learn the rules of sharp features with different conditions
(Section III-D). The pipeline of our method is shown in Fig. 2.

B. Discrete Intrinsic Neighbor Detection

As aforementioned, the local neighbor detection on point
clouds should fit the manifold constraint. If there is an implicit
surface corresponding to a point cloud as a continuous form, the
manifold constraint means that the point-based distance should
be defined “on” the surface, which is consistent with the first
fundamental form. It can be represented as

d (pi, pj) =

∫ 1

0

√
E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+G

(
dv

dt

)2

dt,

(1)
where E,F, and G are second partial derivatives of a curve
parametric function with respect to theu and v that are directions
in the parameter domain, pi = (u(0), v(0)), pj = (u(1), v(1)).
Once the curve parametric function is provided based on the
point cloud, the distance can be computed that satisfies the
manifold constraint. In general, the curve parametric function
is defined by the geodesic path, and the intrinsic neighbor is
detected based on the geodesic distance. It is shown in [5]
that the performance of intrinsic neighbor detection is good
in point cloud-based applications, including simplification, re-
sampling, and reconstruction. However, the implementation of
intrinsic neighbor detection is complicated in practice. Due
to the significant computational cost and sensitivity to the
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Fig. 3. Instance of iterative neighbor searching strategy. (a): initial state; (b):
1-ring neighborhood L1 of source point (red); (c): iterative neighbor searching
for L2. Blue dashed circles represent the wavefront for different values of σ,
which is the scale of the neighborhood.

quality of the target point cloud, calculating the geodesic path
is time-consuming and difficult. Although some methods have
simplified the computation of geodesic, the time cost is still
relatively high. Inspired by the Laplace graph theory [28] and the
fast marching algorithm [29], we propose a new discrete intrinsic
neighbor (DIN) detection for point clouds. This detection can
be regarded as an iterative neighbor searching strategy based
on the Laplace graph. The neighbor searching process adopts
the core idea of fast marching [29] to keep an interface of the
wavefront. The advantage is that it does not require computing
geodesic distance or Voronoi cells to implement intrinsic control.
The implementation of the search process is simple and efficient
while satisfying the manifold constraint.

Let P represent the input point cloud, pi is a point of P ,
L(pi)σ is the intrinsic neighborhood of pi, σ is the scale of the
neighborhood. Once the σ is provided, the neighbor detection is
implemented iteratively as

L(pi)σ = L(pi)σ−1 + {pi}σ, and (2)

{pi}σ =

⎧⎨
⎩pj |pj ∈

∑
pl∈{pi}σ−1

L(pl )1, pj �∈ L(pi)σ−1

⎫⎬
⎭ ,

(3)

where {pi}σ is the discrete form for interface of wavefront,
which is collected from the adjacent neighborhood L1 (defined
by Voronoi cell in tangent space, it can be approximated as a
k-neighbor region, k = 6) of the previous wavefront {pi}σ−1. In
this way, the detection is an iterative search based on the previous
neighborhood, which roughly simulates the propagation process
of the wave equation. The initial neighbors L(pi)1 or wavefront
{pi}1 can be directly extracted from adjacency based on the
Laplace graph. An example is shown in Fig. 3.

It is worth noting that the quality of L(pi) is affected by
the point cloud density. Non-uniform densities take anisotropic
neighbors that reduce the performance of our detection. To
address this challenge, we implement the isotropic simplifica-
tion [30] before the neighbor detection. Such pre-processing
has two advantages. First, the number of L(pi)1 is clear (i.e.,
|L(pi)1| ≈ 6) in an isotropic point cloud, which is guaranteed
by the equilateral relationships between neighbors. Second, the
isotropic property makes the iterative searching close to geodesic
computation while avoiding complex weight calculations [31].

Fig. 4. Comparisons between KNN-based neighbors (A) and DIN-based
neighbors (B) KNN-based neighbors cover some unrelated regions that reduces
the accuracy for local region representation. The DIN-based neighbors represent
more adjacent geometric details according to the manifold constraint.

Algorithm 1: DIN Detection.

The reason is that the weights between the point and its neighbors
in an isotropic point cloud can be represented by the distance
directly. The update of σ explicitly reflects the distance change.
Based on the above algorithmic considerations, we present the
implementation details for DIN detection in Algorithm 1.

Using different values of σ, we can extract multi-scale intrin-
sic neighborhoods useful for subsequent feature learning. For
deep network training, the number of neighbors should be con-
trolled by a uniform value. To implement the accurate control,
we search the neighbors (L(pi)σ) according to the σ. Once the
point number of L(pi)σ is larger than the specified value, the
searching process stops. We randomly delete some points from
the latest wavefront {pi}σ to achieve neighbors with the uniform
value. As shown in Fig. 4, the DIN-based neighbors are better
than KNN-based neighbors for local implicit surface modeling.
In practice, we specify the multi-scale number σ = {3, 4, 5} to
define the neighborhoods. According to the different values of
σ, we estimate the related neighbor point numbers {40, 64, 96}
as the uniform values for related L(pi)σ .
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Fig. 5. Instance of normal vectors. α is the angle between the normal vectors
of A and B; β is the angle between the normal vectors of B and C; γ is the angle
between the negative normal vector of B and the normal vector of C.

C. Intrinsic Shape Descriptor

To describe the sharp feature, a proper local shape operator is
useful. It can be regarded as a kind of formulation for geometric
information of the local region, as presented in (6). In the
previous section, we show that the KNN-based neighbors cannot
provide accurate local implicit surface modeling (ref. Fig. 4),
which degrades the performance of related local shape operators.
We propose the following intrinsic shape descriptor as a new
local shape operator. Benefited from the intrinsic neighbors,
the intrinsic shape descriptor is consistent with the manifold
constraint, which provides a more accurate formulation for the
local geometric structure. It inherits the advantages of intrinsic
neighborhoods and achieves a good trade-off between manifold
consistency and computational efficiency.

Basically, the intrinsic shape descriptor is a normal-vector-
based shape operator consisting of a set of cosine values based
on normal intersection angles. The cosine value can be regarded
as a simple discrete curvature related to the mean curvature. The
computation of its value is formulated as

CNCpi
= cos(Npi

, Npj
), (4)

where CNCpi
represents the cosine normal curvature of point

pi, pj is one of the intrinsic neighbor points of pi, Npi
is the

normal vector of pi, and Npj
is the normal vector of pj . We

compute the absolute cosine value of the intersection angle
between the normal vectors, which can be regarded as a concise
encoding for the local implicit surface. Since normal estimation
has a crucial impact on the calculation of the descriptor, we
employ the advanced normal calculation method Multi-Scale
Fitting Patch Selection (MFPS) [32] to estimate normal vectors.

Even if we obtain accurate normal vectors in local regions,
they are not globally oriented, which reduces the performance
of the related shape descriptor. Without global orientation, the
normal vectors may generate conflicting shape descriptors. As
shown in Fig. 5, the normal vector of points B and C will point
towards different directions. This will result in a sudden change
in the cosβ, causing the classifier to falsely detect a sharp change
in the normal direction, which contradicts the fact that the curve
is smooth and continuous at that point. For the curve (B, C), an
angle γ between the negative normal vector of B and the normal
vector of C should reflect the change in the normal direction of
this curve correctly. Inspired by Sharpness fields [17], we use
the absolute value of cosine to represent the normal vector-based
curvature. Fortunately, the absolute values of cosine from these

two formulations are the same, shown as

| cosβ| = | cos γ|, (5)

where β, and γ represent intersections in the above two formu-
lations, and they have the same absolute value of cosine that
can be used to represent normal-vector-based curvature. Based
on the above reason, we define the new representation of CNC,
formulated as

CNCpi
= |cos(Npi

, Npj
)|. (6)

Once the computation of CNC is provided, the intrinsic shape
descriptor can be established. The descriptor is a set of CNCs
extracted from the intrinsic neighborhood L(pi)σ . It can be
regarded as a concise representation of the local region, similar
to fast point feature histograms (FPFH) [33]. The advantages
of the descriptor include convenient serialization, orientation
independence, and facilitating the established quantitative anal-
ysis. Even if the descriptors indicate rough geometric features,
their advantages are still important for subsequent training tasks.
With the intrinsic shape descriptor, we can use a simple network
structure as presented in Section III-D to learn an accurate and
robust sharp feature model.

D. Multi-Scale Laplace Network

Due to the inherent diversity of point clouds, different types
of sharp features have significantly different characteristics. To
formulate the sharp features, suitable neighborhoods need to
be detected to achieve local shape analysis. In some traditional
solutions, the neighborhood scale is fixed, which may reduce the
flexibility for sharp feature learning. Considering the successful
application of shifted window techniques in the field of image
processing [34], we propose the multi-scale Laplace network
(MSL-Net) as the learning model. It is a multi-channel deep
network constructed by several MLP layers and a weighted
average pooling module for final probability estimation. Each
channel corresponds to a specified scale that simulates the
shifted window across the image. Collecting all features from
different channels, the MSL-Net can estimate the probability of
sharp feature judgment. Benefited from the multi-scale analysis,
the estimation is more accurate than single-scale networks.

Multi-Scale Input: As aforementioned, we can use CNC to
describe the local shape feature. For MSL-Net training, the
multi-scale input is based on the collected CNC with different
scales of intrinsic neighborhoods. It is represented as

MSLN input = {MSLNσ1
, . . .,MSLNσf

}, σ1 < . . . < σf ,
(7)

MSLNσ = {CNCpj
|pj ∈ L(pi)σ}, (8)

where the MSLNσ is a set of CNC extracted from the in-
trinsic neighborhood L(pi)σ . For each point in the cloud, we
establish the MSLN input with different values of σ. In prac-
tice, we specify the channel number f = 3. As mentioned in
Section III, we can specify an accurate number of neighbor
points by deleting some points to control the number in the
range of (|L(pi)|, |L(pi)σ−1|). Then, we can specify MSLNσ

with a certain scale convenient for subsequent training. We set
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Fig. 6. MSL-Net Architecture. It can be regarded as a multi-channel classifi-
cation network for sharp feature detection. As the input feature, the multi-scale
input includes three CNC-based vectors that have been serialized. The three
vectors are respectively inputted into three channels and transformed by a series
of MLP layers. Then, the MSL-Net obtains three feature vectors of reduced
dimensions. Finally, the classification is implemented based on the vectors by
average pooing.

the multi-scales as 40, 64 and 96. The quantitative analysis for
the scale selection is provided in Section IV.

Serialization: The disorder problem should be solved for point
cloud-based deep learning. The classical solution is to imple-
ment max pooling [35] for the feature vector. However, such
implementation neglects more geometric details. Therefore, we
implement the serialization to solve the problem. We consider
two kinds of serialization, which include CNC-based and eu-
clidean distance-based serializations. For the first one, the input
CNC-based feature vector is sorted based on their values. It can
be regarded as a statistical analysis according to the curvatures in
the related DIN region. Such serialization lost the local spatial
correspondence to achieve better robustness for non-uniform
densities. The euclidean distance-based serialization keeps the
local spatial correspondence to a certain degree. However, it
is sensitive to the density. Compared to the max pooling, the
euclidean-distances-based serialization preserves more geomet-
ric information. Although the serialization disrupts the accurate
point-based correspondence of CNC values according to the σ,
it still has significant statistical significance and keeps rough
correspondence. Some details are discussed in Section IV-D.

Network Architecture: The proposed architecture of MSL-Net
is shown in Fig. 6. The multi-scale input vectors extracted from
intrinsic neighborhoods with three scales are inserted into their
corresponding channels. Inspired by the PointNet [35], MLP
layers are used to perform dimension expansion and reduction on
the CNC-based feature vectors. Each MLP layer can be regarded
as a cross-analysis of the CNC-based neighborhood for a point,
which represents the statistical shape feature. Since the initial
vector has already been serialized, there is no need to use a max
pooling layer when reducing the dimension of features, which
maximally preserves the geometric features in the training data.
Finally, we obtain three vectors whose dimensions have been
reduced.

Probability Estimation: Based on the output feature vectors
from the three channels, we estimate the probability of sharp
feature judgment. A weighted average pooling module is used
to combine the three vectors into a single one. The probability
estimation is implemented based on the combined feature vector.

Fig. 7. Visualizations of sharp feature probability estimation by color maps.

In this paper, the MSL-Net classification threshold is set to 0.6.
The judgment threshold of probability is trained to fit the training
data, which can also be regarded as the output score for sharp
feature estimation. Once the threshold is set, the construction of
MSL-Net is completed. To facilitate a clear illustration of the
relationship between probability estimation and sharp features,
we visualize the probabilities by color maps as shown in Fig. 7.
It is clearly observed that the probability estimation successfully
quantifies sharp features.

Loss function: The loss function uses the cross-entropy func-
tion to implement binary classification of the network, which is
represented as

Loss = −
q∑

i=1

yi log(
∧
yi ), (9)

where yi represents the conditional probability of any input

being a sharp feature point,
∧
yi represents one-hot label vector,

and q represents the number of classification categories. In
Section IV, we evaluate the performance of MSL-Net and the
functions of its modules.

IV. EXPERIMENTS

We evaluate the performance of MSL-Net in this section.
All experiments are run on the computer equipped with AMD
Ryzen 7 5800H, 16 GB RAM, RTX3060, and with windows
11 as its running system and pycharm as the development
platform. The learning rate of the network is set to 10−4, and the
optimizer is selected for Adam for model optimization iteration.
The experiments include the following parts: 1) we explain
the basic introduction to the ABC dataset; 2) we introduce the
selected quantitative analysis tools for quality measurement of
sharp feature detection; 3) we discuss the ablation study for
the MSL-Net to demonstrate the effects of different modules
and parameters; 4) we provide a comprehensive analysis with
existing limitations.

A. ABC Dataset

We conducted experiments on ABC dataset [36] that is widely
used in sharp feature estimation. The ABC dataset [36] is col-
lected with one million computer-aided design (CAD) models
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Fig. 8. Visualizations of sharp feature labels of point clouds from the ABC
dataset. The blue labels represent the ground truth of sharp features provided by
the ABC dataset. The red labels represent the sharp features that are not labeled
as the ground truth. It means that the ground truth labels of the ABC dataset
have flaws.

for research of geometric deep learning and related applications.
Each model is established by parametrized curves and surfaces
that provide ground truth for geometric feature detection. The
surfaces mainly include planes, cylinders, cones, spheres, torus,
surface of revolution or extrusion, and NURBS patches [38].
The parametrized curves mainly include lines, circles, ellipses,
parabolas, hyperbolas, or NURBS curves [38]. In this paper, we
consider the parametrized curves of the CAD model as its sharp
features.

The formats of the dataset include various types, including
step, parasolid, yml, stl, obj, etc. Using files with original
parameter representations (step, parasolid) makes it difficult
to construct large training datasets because boundary repre-
sentation (B-Rep) requires the use of off-the-shelf geometric
kernels (Open Cascade [39]), which is not designed for batch
processing. To avoid these issues, we use yml files for sharp
feature extraction. The yml files include the type of parametrized
curve that is a kind of sharp feature representation and the index
of each curve corresponding to its points. With the curve-based
sharp feature labels, we can classify the point cloud into two
types: sharp points and normal points.

Due to the fact that the CAD models in the ABC dataset are
automatically generated, the sharp feature ground truth provided
by the ABC dataset is not comprehensive, as shown in Fig. 8.
Some sharp points are not labeled, which leads to defects in
the ground truth calibrated based on the parametrized curves.
In order to establish more convincing experimental tests, we
selectively extract a subset from the ABC dataset with accurate
labels. The test results are reported based on the subset and the
original one at the same time.

On the ABC dataset, all point cloud models are noise-free with
relatively uniform distributions. The training dataset is collected
by 100 models with clear edges of different types (straight lines,
spline curves, circles, etc.) from the ABC dataset. We also add
Gaussian noise with an intensity of 0.12% times the diagonal
length to extend the diversity. During the training process, it is
necessary to consider the ratio of positive and negative samples.
The reason is that the proportion of positive edge points is lower
in general. Without the sample balance, the training process will
be biased towards more negative points or normal samples. We
select all edge points as positive samples and randomly choose
normal points as negative ones from models.

We have conducted performance tests on seven datasets,
which include As(selected subset of ABC with more accurate
sharp features with 1000 point clouds), Aall(original ABC with

TABLE I
SEVEN DATASETS WERE USED TO COMPARE THE PERFORMANCE OF

DIFFERENT SHARP FEATURE DETECTION METHODS

1500 sets of data), we adopt a Gaussian distribution with a mean
of 0.12%, 0.2% and 0.3% of the diagonal length of the bounding
box and a standard deviation of one to generate N (number of
points) random numbers for the X , Y , and Z axes, respectively.
Then, we add the random numbers to the point cloud coordinates
to generate a point cloud with Gaussian noise. Ag , Ag2, Ag3(As

add Gaussian noise with 0.12%, 0.2%, 0.3% noisy intensity
respectively), sparse point clouds(we extract 1000 models from
the ABC [36] dataset and implement down-sampling [37]), and
real point clouds(we collect 125 real scanning point clouds
provided by reference [3]. Such point clouds are achieved from
3D models of ABC data with 3D printer and scanner), the test
dataset as shown in Table I. In the following parts, we report the
performance of sharp feature detection based on the test sets.

B. Metrics

Geometric Consistency: To evaluate the performance of sharp
feature detection, we need a set of quantitative analysis tools to
provide metrics. Here we use DP , DG and Dmean to represent
the geometric consistency between the detected results and the
ground truth.

DP =
1

|P ′|
∑
pi∈P ′

dmin(p
′
i, G), (10)

DG =
1

|G|
∑
gi∈G

dmin(gi, P
′), (11)

where DP represents error of minimum distance from detected
sharp point p′i to the ground truth G, |P ′| is the number of
sharp points. Correspondingly, DG is the error from ground
truth point gi to the P ′. Both evaluation indicators can reflect
the effectiveness of sharp feature detection to a certain extent.
However, there are some limitations: if there are fewer detected
edge points,DP is lower unreasonably. For instance, if the model
only detects one single correct edge point, the value of DP is
zero,

∑
pi∈P ′ dmin(p

′
i, G) = 0. Similarly, if there are redundant

detected edge points, the value of DG is unreliably higher. To
mitigate the impact of the two extreme cases, we calculated the
mean of DP and DG,

Dmean =
DP +DG

2
, (12)

It is used to avoid bias in classification and provide a balanced
measurement for the geometric consistency of sharp features.
The details are discussed in the next subsection.

Classification Accuracy: To reveal a more intuitive perfor-
mance for sharp feature detection, we also employ some tra-
ditional metrics for classification measurement, including the
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percentage of classification accuracy, recall, and FPR (False
Positive Rate). Such metrics are used to estimate the sharp point
judgment directly.

The sharp feature detection is a binary classification task
(classify sharp points and normal points). Therefore, some
classical classification indexes can be employed to estimate
the accuracy, which includes accuracy, recall, FPR, and ROC
(Receiver Operating Characteristic) curves. The classification
accuracy can be directly counted by the percentage of correct
classification of sharp points and normal points. To evaluate the
overall performance of network classification, we use accuracy
as a quality assessment metric, as shown in (13).

Accuracy =
TP + TN

N
, (13)

where TP (True Positives) is the number of cases where the
actual value is positive and the predicted value is also positive,
TN (True Negatives) is the number of cases where the actual
value is negative, and the predicted value is also negative, and
N is the total number of samples.

In order to measure whether the sharp points are correctly
predicted, we use the recall rate as an indicator. The recall rate
with a higher value means that the method is sensitive to the
sharp feature. The calculation of the recall rate is shown in (14)

Recall =
TP

(TP + FP )
, (14)

where FP (False Positives) is the number of cases where the
actual value is negative but the predicted value is positive. To
measure the insensitivity of the method for normal points, we use
FPR as another indicator. The lower the FPR, the fewer normal
points are misjudged as sharp points. The calculation of FPR is
shown as

FPR =
FP

(TN + FP )
. (15)

C. Comparisons

Experimental Comparisons with Different Methods: We com-
pare the sharp feature detection performance of different meth-
ods based on the seven test sets. The mentioned metrics are used
to measure the related indexes of the detection methods, which
contain geometric consistency, classification accuracy, and noisy
robustness. The comparison methods include sharpness fields-
based detection (ShF) [17],Voronoi-based feature estimation
(VCM) [1], DEF-Net [3], PIE-Net [21] and EC-Net [4] that
cover the mainstream technology solutions. In Tables II–IV, the
estimated results based on the mentioned indexes are reported.
It is clear that our method achieves more accurate classification
results. In Fig. 14, more intuitive histograms are visualized to
represent the advantage of our method in classification. As MSL-
Net and VCM provide threshold parameters, we can extract
different numbers of sharp feature points by setting different
thresholds. However, EC-Net and ShF cannot manually set
threshold parameters, so we only compared the ROC curves
of MSL-Net and VCM in Fig. 15. Some instances are visualized
in Figs. 9 and 10. Even in the presence of noise interference, our
method is still able to better detect sharp points.

TABLE II
QUANTITATIVE METRICS OF DIFFERENT SHARP FEATURE DETECTION

METHODS BASED ON THE TEST SET As

TABLE III
QUANTITATIVE METRICS OF DIFFERENT SHARP FEATURE DETECTION

METHODS BASED ON THE TEST SET Ag

TABLE IV
QUANTITATIVE METRICS OF DIFFERENT SHARP FEATURE DETECTION

METHODS BASED ON THE ORIGINAL ABC DATASET Aall

TABLE V
QUANTITATIVE METRICS OF DIFFERENT SHARP FEATURE DETECTION

METHODS BASED ON REAL SCANNED POINT CLOUDS

Experiments on Sparse Point Clouds: In order to generate
sparse point clouds, we extract 1000 models from the ABC [36]
dataset and implement down-sampling [37]. The point number
is controlled to 10,000. The sharp feature detection results
are shown in Fig. 13 with quantitative analysis in Table VI.
Results demonstrate that both DEF-Net and our method yield
favorable results on sparse point clouds. Due to the detection of
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Fig. 9. Comparisons of different sharp feature detection methods(ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3]).

Fig. 10. Comparisons of different sharp feature detection methods (ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3]) for noisy point clouds.

neighborhoods in euclidean space, ShF produces more errors on
sparse point clouds. It is important that our method implements
feature detection on simplified models directly. The DEF-Net
performs slightly better performance than our method, which
benefits from the input point cloud with clean and uniform
distributed points. As shown in Figs. 12 and 10, we prove that the
DEF-Net notably under-performs our method on non-uniform

and noisy models. Despite employing up-sampling during edge
detection, EC-Net still overlooks a considerable number of edge
points. Similarly, the PIE-Net and VCM methods exhibit inferior
performance in edge point detection compared to our method.

Experiments on Different Levels of Noisy Point Clouds: We
have conducted comparative experiments with different levels of
noise (0.12%, 0.2% and 0.3%), which are reported in Tables VII
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TABLE VI
QUANTITATIVE METRICS OF DIFFERENT SHARP FEATURE DETECTION

METHODS BASED ON SPARSE POINT CLOUDS

TABLE VII
RECALL OF DIFFERENT METHOD BASED ON THE DIFFERENT LEVELS OF

NOISY MODEL

TABLE VIII
FPR OF DIFFERENT METHOD BASED ON THE DIFFERENT INTENSITY OF

NOISY MODEL

and VIII. Among the evaluation indicators, Recall represents
the accuracy of positive edge point detection in total proportion.
On the contrary, FPR refers to the false positive proportion in
the detection. The two metrics should be combined to evaluate
the performance of sharp feature detection. For VCM, ShF, and
PIE-Net, the related values of FPR are higher, which means these
methods tend to extend the edge points in regions with sharp
features. For DEF-Net, its recall is lower than others, which
means it considers more points to be normal points and neglects
real edge points. The EC-Net achieves a relatively balanced
result. However, its recall value is significantly lower than our
method. The reason is that our method adopts a more aggressive
recognition strategy. It helps to identify more edge points in the
sharp feature region. Overall, our method achieves better sharp
feature results with more stable performance.

Experiments on Real Scanning Point Clouds: We collect 125
real scanning point clouds provided by reference [3]. These
point clouds are achieved from 3D models of ABC data with
a 3D printer and scanner. In Fig. 11, our method predicts edge

Fig. 11. Real-World scanning point cloud.

Fig. 12. Comparisons of different sharp feature detection methods
(ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3]) for real-world point
clouds.

points that are closest to the ground truth. Due to the sparsity
and non-uniformity of the scanned point clouds, as shown in
Fig. 12, calculating the neighborhood in euclidean space for
ShF produces more errors. In comparison, our method uses
intrinsic neighborhood detection, which effectively improves the
accuracy of detection. The real scanning point clouds contain
more random noisy points. The performance of DEF-Net is
reduced for noisy point clouds, which are proved in Table III.
Benefiting from up-sampling, EC-Net can achieve better results.
However, it is sensitive to the point distribution that has been
proved in Table VI. Our method achieves a balanced scheme
with a more stable performance.

D. Ablation Study

In this part, we evaluate the function of each module in MSL-
Net to verify the rationality of its structure. The modules include
normal estimation, neighbor detection, structure of multi-scale,
and serialization processing.

Normal Estimation: To achieve the intrinsic shape descriptor,
normal estimation is necessary for MSL-Net training. We com-
pare the performance of different normal estimation methods,
including PCA-based estimation [40], MFPS [32], DeepFit [41],
and NH-Net [32]. The quantitative analysis results are shown in
Table IX. It can be seen that MFPS helps to detect more accurate
sharp points while ensuring the stability for judgment of normal
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Fig. 13. Comparisons of different sharp feature detection methods
(ShF [17],VCM [1], EC-Net [4],PIE-Net [21],DEF-Net [3]) for sparse point
clouds.

Fig. 14. Visualizations of quantitative metrics for different methods. First
column: classification accuracy results of different methods; second column:
geometric consistency metrics of different methods.

Fig. 15. Visualizations of ROC for Ours and VCM methods.

points as much as possible. In comparison, other methods are
more sensitive to non-uniform densities. Therefore, the normal
estimation of MSL-Net is implemented by MFPS in practice.

Neighbor Detection: As an important module of MLS-Net,
the DIN detection extracts intrinsic neighbors to represent local
shape features. It is completely different from the traditional

TABLE IX
QUANTITATIVE METRICS OF MSL-NET WITH DIFFERENT NORMAL CALCULATE

METHODS ON As

TABLE X
QUANTITATIVE METRICS OF MSL-NET WITH DIFFERENT NEIGHBOR

REGIONS ON As

Fig. 16. Comparison of different normal estimation methods.

KNN detection that has been shown in Fig. 4. The improvement
of the DIN detection should be evaluated. We compare the
performance of MLS-Net with KNN detection. In Table X, the
geometric consistency and classification accuracy results are
shown. It is clear that DIN detection significantly improves the
performance of sharp feature detection.

Multi-Scale Structure: Different scales of DIN also take influ-
ence for MSL-Net. To reveal the relationship between the scale
and the sharp feature detection, we select different k values (8,
40, 64, 96) in DIN detection to compare the performance. The
results are also reported in Table X. It reveals that the smaller
scale of DIN tends to reduce the sharp points. On the contrary,
the larger scale predicts more sharp points around the ground
truth. The two conditions explain that the multi-scale DIN is to
avoid the two extreme situations and balance the accuracy and
robustness. In Fig. 17, we visualize the sharp feature detection
results by MSL-Net with different scales of DIN. Compared
to the single-scale DIN, the multi-scale DIN achieves more
accurate and robust sharp features.

The Multi-Scale Grouping (MSG) module used in Point-
Net++ and the multi-scale network used in MSL-Net share
similar ideas for local geometric feature learning. The difference
is that the MSG module shares the learning parameters in the
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Fig. 17. Visualizations of sharp features detected by MSL-Net with different
kinds of neighbors and related scales.

TABLE XI
QUANTITATIVE METRICS OF MSL-NET WITH DIFFERENT

SERIALIZATIONS ON As

network with one branch and MSL-Net trains the independent
parameters in related channels with corresponding scales. Obvi-
ously, the multi-channels improve the accuracy and robustness
for detection, which have been proven in ablation, as shown in
Fig. 17 and Table X. MSG is a module for calculating multi-scale
neighborhoods in euclidean space, which is equivalent to the
KNN Multi-Scale module in the paper. From Table X, it can be
observed that the use of DIN significantly outperforms MSG in
most indicators.

Serialization: The disorder problem should be solved for
point cloud-based deep learning. The classical solution is to
implement max pooling [35] for the feature vector. However,
such implementation neglects more geometric details. There-
fore, we implement the serialization to solve the problem. Two
kinds of serialization can be used, which include CNC-based
and euclidean distance-based serializations. For the first one,
the input CNC-based feature vector is sorted based on their
values. It can be regarded as a statistical analysis according
to the curvatures in the related DIN region. Such serialization
lost the local spatial correspondence to achieve better robust-
ness for non-uniform densities. The euclidean distance-based
serialization keeps the local spatial correspondence to a certain
degree. However, it is sensitive to the density. To show the
performance of the two serializations, we report the quantitative
analysis results in Table XI. In Fig. 18, two instances are used
to visualize the difference between the two serializations. The
results demonstrate that local spatial correspondence is more
important for sharp feature learning.

Fig. 18. Visualizations of different serialization methods, Left: CNC-based
serialization; right: Euclidean distance-based serialization.

TABLE XII
TIME REPORTS OF DIFFERENT METHODS FOR POINT CLOUDS WITH DIFFERENT

POINT NUMBERS

E. Comprehensive Analysis

It has been proved that our method achieves more accurate
and robust results for sharp feature detection tasks. Especially
for noisy point clouds, the multi-scale structure of MSL-Net
with DIN can achieve more effective feature estimation that fully
considers the local surface property and statistical shape feature
in larger regions. It has been shown that a multi-scale structure
is better than a single-scale structure.

From the comparison results with the SOTA methods in
Section IV-C, it can be seen that the ShF [17] predicts more
edge points around the regions with sharp features, which lacks
accurate analysis in the local region. For noisy point clouds, it
produces more independent edge points that violate the conti-
nuity of sharp features. For the same reason, the performance
of VCM [1] is significantly reduced for noisy points. Some
negative results are shown in Fig. 10. The continuity of edge
points is not well by EC-Net [4] and PIE-Net [21], which is
affected by the noisy points. As the SOTA method, DEF-Net [3]
can achieve better performance on point clouds with uniform
distribution. However, it is also sensitive to noisy points and
affected by non-uniform densities, which are proved in Fig. 10
and Table III. Overall, our method achieves a better balance
between robustness and accuracy.

Even though our method employs multi-scale analysis and
DIN detection, it still has some advantages in computational
efficiency. The DIN detection effectively simplifies the calcu-
lation for intrinsic neighbors. It avoids complex computations
like geodesic searching and Voronoi diagram construction. We
report the time cost of different sharp feature detection methods
in Table XII. For point clouds with different point numbers,
MSL-Net achieves faster computation speed. The reason is that
the structure of MSL-Net is simpler, which facilitates feature
learning. It doesn’t require complex geometric feature-based
pre-modulation and analysis.
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Limitations: Although the MSL-Net achieves significant im-
provements in sharp feature detection, some limitations still
exist, including normal vector dependency, ambiguity in sharp
point detection on thin surface boundaries, and sensitivity to
non-uniform densities. In Table IX, different normal vector
estimation methods produce different performances for sharp
feature detection. It means that our method is sensitive to normal
vector estimation. Thin surfaces increase the difficulty of search-
ing the intrinsic neighbors. Continuous normal transformation
pattern in the area of the thin surface is difficult to model
and recognize. For the same reason, the non-uniform density
has some potential effects on feature learning. In addition, it
reduces the accuracy of euclidean distance-based serialization
for CNC. Our method uses isotropic simplification to reduce the
influence as much as possible. However, the influence can not
be eliminated completely.

V. CONCLUSION

We propose an accurate and robust sharp feature detection
method MSL-Net. It extracts DIN from point clouds to improve
the accuracy of local region representation. Based on the DIN,
we design the intrinsic shape operator that describes the local
shape feature while keeping the manifold distribution. With a
multi-scale structure, the MSL-Net learns sharp features from
input intrinsic shape operators extracted from different scales
of DIN. The scheme achieves a balance between local surface
property and statistical shape features. Experiments show that
the DIN and multi-scale structure achieve significant improve-
ment for point clouds even when there are random noisy points.
In future work, we will employ a new deep learning structure
to handle normal vector dependence problems and improve the
serialization.
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