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Abstract—Landmark localization plays a significant role in
craniofacial registration, reconstruction, and authentication. The
key challenges for localizing landmarks on point cloud craniofa-
cial models include irregular structures, non-uniform densities,
and uncertain local regions. In this paper, we propose an end-
to-end regression network that can directly estimate craniofacial
landmarks on point cloud models. The proposed network utilizes
edge convolution to extract local features and pooling layers to
aggregate global features. It realizes the end-to-end regression
for landmark localization. Experimental results demonstrate that
our method is robust on point clouds with sparse and unevenly
distributed sampling. It can produce accurate, controllable, and
efficient 3D landmarks.

Index Terms—Craniofacial landmark localization, regression
network, edge convolution, sparse point cloud

I. INTRODUCTION

Craniofacial landmarks are defined by physiological features

according to the structural characteristics of the skull and

muscular tissues of the head, such as eye corners, nose tip,

mouth corners and facial contour points. The localization is to

automatically identify skull and skin landmarks on the cran-

iofacial model according to the basic theory of anatomy and

forensic anthropology. Such landmarks lay a foundation for

the subsequent craniofacial morphological research and take a

significant role in related applications, including craniofacial

registration, reconstruction, and authentication.

2D landmark localization has achieved high accuracy and

robustness with the development of deep learning [2]. To

locate 3D landmarks, some recent studies try to convert 3D

model into 2D domains [7], [14], [16] which can utilize the ad-

vantages of 2D landmark localization. However, dimensional

reduction usually results in information loss. Some points of

the 3D model would be mapped into the same 2D region

that produces inverse projection ambiguous [17]. Therefore,

directly locating landmarks on 3D models is becoming a

research trend that can avoid the problem.

There are some challenges for direct 3D landmark local-

ization, including irregular structures of 3D models, non-

uniform point densities, and uncertain local regions. The chal-

lenges make the effective conduction of spatial convolution
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difficult. Some physiological salient feature landmarks locate

in uncertain local regions that are not geometrically salient.

Consequently, most existing 3D craniofacial landmark local-

ization methods detect feature points based on local geometric

information. They are sensitive to point densities and can only

locate geometrically salient landmarks (such as nose tip and

eye corners) but often fail to identify other landmarks [12]

without significant geometric features.

In order to solve the problems, we propose a novel regres-

sion network that can estimate landmarks on 3D craniofacial

point cloud models directly. By performing edge convolution

and pooling layers to aggregate the local and global features

on the models, the network ensures the accuracy of prediction

for craniofacial landmarks. It can directly regress seventy-eight

(78) craniofacial physiological landmarks (that are widely used

in forensic tasks) from the point cloud model with non-uniform

density. Furthermore, our method can also allow the users

(forensic specialists) to specify different numbers of other

landmarks relevant to their requirements (e.g., for different

craniofacial registration or reconstruction tasks). The main

contributions of this paper are as follows:

• We present an end-to-end regression network that can

automatically locate landmarks on 3D craniofacial point

clouds in order to avoid the problem of information loss.

• We employ the edge convolution structure and pooling

layers to extract local and global features from the point

cloud to quickly locate standard or customized feature

landmarks.

• We will release a pre-trained model that can be used in

many forensic tasks that need accurate landmark local-

ization from sparse and unevenly distributed point cloud

models. It is robust to non-uniform densities.

II. RELATED WORK

Landmark localization has always been a hot topic in

the field of computer vision and computer graphics. Many

effective methods have been summarized by Kostiantyn [1] in

recent years. In this paper, we mainly focus on the works of

3D landmark localization, which can be discussed from two

aspects: geometric methods and learning methods.
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A. 3D landmark localization with Geometric Analysis

In methods of geometric analysis, landmarks are defined ac-

cording to geometry features, such as curvature and local shape

descriptors. Some methods [9], [10] employ anthropometric

statistic tools to code prior knowledge and locate landmarks

such as nose tip and eye corners. Gilani et al. [5], [8] proposed

an automatic landmark localization method by registering the

reference face to the target one. Cheng et al. [11] divided the

3D face landmark localization into two steps, including depth

map converting for landmarks coarse localization and shape

index-based geometric analysis. Enrico et al. [12] performed

landmark localization by calculating 12 geometric descriptors,

including Gaussian curvature, mean curvature, and shape index

for each point of the 3D model to analyze the facial shape and

implement landmark localization. By geometric analysis, most

landmarks with salient geometric features can be accurately

calibrated without complex training and estimation. However,

the computation is complicated, and the number of landmarks

can not be controlled. Generally, the localization is limited to

the quality of local geometric features.

B. 3D landmark localization with Neural Network

Considering successful experiences of deep learning in the

field of computer vision, another kind of localization method

utilize mature neural network technologies to detect 2D or

3D landmarks in related 2D representation. Gao et al. [14]

proposed a 3D facial landmark localization network using re-

gression networks 3DLLN(3D landmark localization network),

which uses the location map as an intermediate representation

and detects 3D landmarks coordinates from it. Zhang et al. [16]

and Xu et al. [7] converted 3D face into depth image and

predicted 2D landmarks with a 2D convolutional regression

network. When a single 2D depth map is used to represent the

3D model, many points in the lateral part of a face concentrate

in the same pixel grid due to the viewpoint, which results in

information loss after the dimensional mapping. To solve the

problem, Terada et al. [6] and Zhang et al. [17] improved

the 2D depth representation with cylindrical projection to

represent the 3D model. Then, they predicted 2D or 3D

landmarks by improved Resnet-based networks, respectively.

As mentioned before, information loss is inevitable when

the 3D model is converted to related a 2D representation.

Generally, landmarks calibration directly on the 3D model

can obtain more accurate results than 2D representation-based

localization. Eimear [15] used PointNet for feature extraction

of 3D models and extended convolutional pose machine for

3D landmarks coordinate regression. However, it is sensitive

to non-uniform densities and uncertain local regions.

We proposed an end-to-end regression network that can

automatically locate 3D landmarks on craniofacial point cloud

models directly. It avoids the problem of information loss. The

network extracts global and local features of the point cloud

for complicated models with skull and skin data while realiz-

ing the control of the relative distance between landmarks from

the global perspective. It ensures the accuracy of prediction for

Fig. 1. The pipeline of landmark localization based on regression network

landmarks and achieves robustness to handle the mentioned

challenges.

III. METHOD

The proposed regression network can directly estimate 3D

landmarks on craniofacial point cloud models, as shown in

Fig.1. Firstly, we introduce the details of model scanning and

related calculations as the pre-processing. Then, we introduce

the implementation of the end-to-end regression network with

edge convolution and pooling layers. Based on the network,

we can directly obtain the craniofacial landmarks by the point

cloud coordinates and normal vectors.

A. Pre-processing

1) Craniofacial Point Cloud Reconstruction from CT: In

this study, our craniofacial models came from a database of

208 whole-head CT scans. The raw CT slice images were

processed by filtering the noise, and the cranial and facial

boundaries were extracted with the Sobel operator. Then, the

Marching Cubes algorithm [18] was used to reconstruct the

3D skull and face, which was subsequently simplified to a

point cloud of about 40k vertices. Finally, we convert all 3D

craniofacial data to a unified Frankfurt coordinate system [19],

[20] to eliminate the effects of data acquisition, pose and scale.

2) Ground-truth of Craniofacial Landmarks: Craniofacial

landmarks include skull landmarks and facial ones. The skull

landmarks are obtained by forensic experts according to the

physiological structure of a skull, and the most representative

points of each bone structure are used as landmarks. The facial

landmarks are mapped from the skull landmarks according

to the soft tissue thickness to obtain the corresponding facial
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Fig. 2. The End-to-End Regression Network. The upper part is the feature
extraction layer, which extracts the local features through edge convolution.
The lower part is the coordinate regression layer, which regresses the
landmarks by the pooling layers and multi-layer perception.

landmarks. Seventy-eight (78) physiological craniofacial land-

marks are used for training and testing in this paper (as shown

in Fig.1).
3) Data Augmentation: The normal vector is an indis-

pensable descriptor in traditional geometric analysis methods

and plays a significant role in deep learning. To enhance the

geometric features contained in the craniofacial point cloud

model, we estimate the normal vector for each point based on

the local surface.

Since the proposed network has no restriction on the number

of points, it is possible to locate the landmarks of an arbitrary

number of points after obtaining a pre-trained model. Also, to

augment the training data and speed up the network training,

we randomly sample each craniofacial point cloud model for k
times. The sampling points are set to 1024, as shown in Fig.1.

After experimental testing, we set k = 5 to balance speed and

accuracy.

B. End-to-End Regression Network

We design our network from global and local features. For

the local feature-based analysis, each landmark should consist

of the most salient geometric features in the neighborhood.

We introduce the edge convolution structure [13] to learn the

local features contained in the neighborhood for each point.

For the global feature-based analysis, the landmarks can be

regarded as a sparse set of points to represent the structural

information of the whole craniofacial surface. At the same

time, the global features can describe the general information

of the model by a little feature. Therefore, we extract and

utilize the global features of the craniofacial point cloud model

to regress the coordinates of the landmarks.So we divide the

network architecture into two parts: the feature extraction layer

and the coordinate regression layer.As shown in Fig.2 and

Table.I.
1) The Feature Extraction Layer: The feature extraction

layer is to compute its local features for each point by the

four-layer edge convolution, where the edge convolution is

divided into two parts: feature aggregation and convolution.

Feature Aggregation.The directed graph G = (V,E)
representing the local point cloud structure, as shown in Fig.3.

Fig. 3. Feature Aggregation

The V = {1, 2, 3, ..., n} and E ⊆ V × V are the vertices

and edges of the local point cloud of the directed graph,

respectively. We use the k-nearest neighbor (KNN) graph as

a local point cloud structure directed graph, where k is set to

6. The edge feature is defined as

eij = hθ(xi, xj − xi), (1)

where hθ is a nonlinear function with a set of learnable

parameters θ. After solving all the edge features E for the

local point cloud directed graph G, we choose the symmetric

aggregation function Max as the edge feature integration

function, as shown in Eq.2, and use the extracted features as

the features of the local point cloud directed graph centroids

xi, represented as

xi = Max
j∈(1,n)

(eij). (2)

Convolution. We obtain n (the number of points) local

features after aggregation. Next, we increase the dimension

of these features by convolution. The parameters are shown in

Table.I. Since we have done the feature aggregation for each

point before increasing dimension, so that the local features

of each point contain the neighborhood information and lay

the foundation for the subsequent global feature aggregation.

TABLE I
THE END-TO-END REGRESSION NETWORK STRUCTURE

Layer Filter Input Shape Output Shape

Conv1 1× 1 1024× 1× 6 1024× 1× 64
Conv2 1× 1 1024× 1× 64 1024× 1× 256
Conv3 1× 1 1024× 1× 256 1024× 1× 512
Conv4 1× 1 1024× 1× 1024 1024× 1× 1024
MaxPooling - 1024× 1× 1024 1× 1024
AvgPooling - 1024× 1× 1024 1× 1024
Concat - 1× 1024× 2 1× 2048
Linear1 - 1× 2048 1× 1024
Linear2 - 1× 1024 1× 512
Linear3 - 1× 512 1× 256
Linear4 - 1× 256 1× 234

2) Coordinate Regression Layer: The coordinate regression

layer realizes the aggregation of the extracted local features

into global features and the regression of global features

to landmarks. After the feature extraction layer, we obtain

n×1024 local feature. Next, we use MaxPooling and AvgPool-

ing layers for feature extraction to form a global description

feature of 1×2048. We designed a Multi-Layer Perception
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structure with layer-by-layer feature extraction to form M ×3
(M is the number of feature points) features as the coordinates

of the landmarks for regression.

The global features can describe the general information of

the model with a global view. The features are aggregated from

the local features after edge convolution and contain complete

neighborhood information. Based on the features, the proposed

network can accurately locate landmarks. At the same time,

we can adjust the parameter M (number of landmarks) of the

output layer to realize the localization of an arbitrary number

of landmarks.

3) Loss Function: The loss function design of our network

divides into three parts: landmarks coordinate loss, landmarks

distance surface loss, and regularization loss, and the weights

of different module losses are adjusted according to the

experiment.

Landmarks coordinate loss. Calculate the Euclidean dis-

tance from the regression landmarks to the ground truth land-

marks, as shown in Eq.3, to control the regression landmarks’

coordinates to be as close to the ground truth as possible.

Ldist =
1

M

∑

mi∈M

d2G(mi, gi) (3)

Where M is the number of landmarks, mi is the predicted

landmarks, gi is the ground truth landmarks on the cranio-

facial surface, and d2G is the distance between the predicted

landmarks and the ground truth.

Loss of landmarks from the surface. The distance from

the regression landmarks to the craniofacial surface to ensure

that the regression landmarks are as close to the craniofacial

surface as possible, as shown in Eq.4,

Lsurf =
1

M

∑

mi∈M

d2S(mi, S) (4)

where mi is the predicted landmarks, S is the craniofacial

surface, and d2S is the nearest distance between the predicted

landmarks and the craniofacial surface.

L2 regularization loss. To prevent overfitting, we add L2

regularization loss, as shown in Eq.5

Lregular = ||ω||22 (5)

Thus, the loss function of the regression network as shown

in Eq.6.λ1,λ2 and λ3 are the weights of Ldist,Lsurf and

Lregular,respectively.

L = λ1Ldist + λ2Lsurf + λ3Lregular (6)

IV. EXPERIMENTS

In this section, we conducted an ablation study on our

proposed approach to fully understand and evaluate the role

and effect of each part for landmarks localization. We test on

craniofacial with different sampling to verify the robustness

of our method. Finally, we compared the proposed landmarks

localization method with other deep learning methods.

TABLE II
LOCALIZATION ERROR WITH DIFFERENT POINTS NUMBERS.

N=512 N=1024 N=2048 N=16384

NME 0.02712 0.02487 0.02559 0.02610

A. Normalized Mean Error

In this paper, we use the Normalized Mean Error

(NME) [21]. The normalized mean error is used to determine

the accuracy of landmarks prediction, and the lower the NME,

the higher the accuracy. The NME is defined as shown in Eq. 7,

NME =
1

M

M∑

i

||mi − gi||2
d

(7)

where mi and gi denoted the ground truth landmarks and

predicted landmarks, respectively. mi = (xi, yi, zi), and the

NME is set d as the distance between the outer eye corners,

i denotes the ordinal number of the point, and M denotes the

number of landmarks.

B. Ablation Study

In this chapter, to more clearly understand the effectiveness

of different parts of our method on landmark localization, we

conducted an ablation study for our method.

We verify the effectiveness of normal on the landmark

localization effect by using only the point coordinates as

input to the network and the experimental results as shown

in Fig.4(a). In order to verify the effectiveness of edge

convolution, we replace the network architecture with the

point convolution structure in the PointNet [4] architecture for

comparison experiments, and the results are shown in Fig. 5.

In summary, the error in landmark localization can be reduced

by adding the normal and using the edge convolution module.

C. Robustness on Point Number of 3D Model

After obtaining the network pre-training model, we can test

a point cloud of an arbitrary number of points. We randomly

sampled the point cloud with different numbers of points as

shown in Fig.6, and by calculating the NME of 60 sets of

models, the results are shown in Table.II. We find that the

landmark localization can still achieve an accurate result even

though the point cloud has been very sparse and non-uniform,

which can show that we have good robustness in landmark

localization by using global features.

D. Comparison Experiments

We compared our method with two recent 3D landmark

localization approaches, DepthMap [7] and HeatMap in [15].

As shown in Fig. 5, our method can more accurately locate the

seventy-eight (78) physiological landmarks. The comparison

methods cannot detect accurate landmarks without salient ge-

ometric features (landmarks located in the middle of foreheads

and cheeks). Benefited from the combination between local

and global features, our method can solve the problem. The

landmarks without salient geometric features can be detected
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(a) Normal Ablation (b) Skin Comparison

(c) Skull Comparison (d) Speed Comparison

Fig. 4. The normalized mean error and mean speed

Ground Truth Ours PointNet Structure DepthMap HeatMap Ground Truth Ours PointNet Structure DepthMap HeatMap

0.00 max

Fig. 5. Skin and skull localization result quality comparison. From left to right are: the ground truth, the localization results of our method, the localization
results of PointNet, the localization results of DepthMap, and the localization results of HeatMap.Blue landmarks represent the smaller error.
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TABLE III
LOCALIZATION ERROR AND ALGORITHM SPEED (IN SECONDS)

COMPARISON WITH POINTNET [4], DEPTHMAP [7] AND HEATMAP [15].
LOWER NUMBER (ERROR AND SPEED) IS BETTER.

Ours Pointnet DepthMap HeatMap

NME 0.02487 0.06257 0.03883 0.03110
Speed 0.00303 0.00492 0.06318 0.02561

(a) N=512 (b) N=1024 (c) N=2048 (d) N=16384

(e) N=512 (f) N=1024 (g) N=2048 (h) N=16384

Fig. 6. Different Points Number Comparision

by global feature analysis. Some instances are shown in Fig. 4.

The quantitative analysis results are reported in Tables II

and III. It is clear that our method achieves more accurate

landmarks at a faster speed.

V. CONCLUSION

In this paper, we propose a regression network that can

robustly and automatically estimate craniofacial landmarks

on point cloud models. Our method overcomes the main

challenges of 3D craniofacial landmark localization. It im-

proves accuracy with a controllable point number. Experi-

mental results demonstrate the effectiveness of our method

on various point cloud models with non-uniform densities or

sparse distributions.
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