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Abstract—With the development of 3D digital geometry technology, 3D triangular meshes are becoming more useful and valuable in
industrial manufacturing and digital entertainment. A high quality triangular mesh can be used to represent a real world object with
geometric and physical characteristics. While anisotropic meshes have advantages of representing shapes with sharp features (such
as trimmed surfaces) more efficiently and accurately, isotropic meshes allow more numerically stable computations. When there is no
anisotropic mesh requirement, isotropic triangles are always a good choice. In this paper, we propose a remeshing method to convert
an input mesh into an adaptively isotropic one based on a curvature smoothed field (CSF). With the help of the CSF, adaptively
isotropic remeshing can retain the curvature sensitivity, which enables more geometric features to be kept, and avoid the occurrence of
obtuse triangles in the remeshed model as much as possible. The remeshed triangles with locally isotropic property benefit various
geometric processes such as neighbor-based feature extraction and analysis. The experimental results show that our method achieves
better balance between geometric feature preservation and mesh quality improvement compared to peers. We provide the
implementation codes of our resampling method at github.com/vvvwo/Adaptively-Isotropic-Remeshing.

Index Terms—Adaptively isotropic, remeshing, curvature smoothed field.
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1 INTRODUCTION

A S one kind of 3D data representation, triangular
meshes have been successfully used in many com-

mercial applications such as film industry, intelligent city
management, advertising, automated manufacturing, and
medical analysis. Compared to point clouds and depth
maps, triangular meshes retain complete topological struc-
ture with better 2-manifold property. They support various
geometric analyses such as heat flow computation [1], Ricci
flow [2], optimal transportation [3], functional map [4], and
geodesic curve extraction [5]. To benefit these applications,
high quality meshes are often required. While anisotropic
meshes have advantages especially in terms of computa-
tional efficiency and representation accuracy [6], they break
the uniformity of neighboring structures, which may cause
some numerical issues. For instance, some computer aided
design (CAD) models often have very thin and long (i.e.,
distorted) triangle faces, which break the isotropic property
of the mesh and have significant differences in local struc-
tures. The low quality of meshes will reduce the reliability
of geometric feature extraction and analysis [1]–[5]. When
there is no anisotropic mesh adaption, isotropic meshes
are always a good choice, which provide good numerical
stability of computations.

Remeshing helps to convert a low quality mesh into
an isotropic mesh. Following the prior knowledge [7] [8],
two typical frameworks are designed for remeshing: edge
reconnection and neighborhood optimization. The edge re-
connection framework attempts to reconnect vertices of
the input mesh to achieve related remeshing result. It can
achieve the suitable isotropic property without performing
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Fig. 1. Adaptively isotropic remeshing. Left: original mesh; right: the
result of adaptively isotropic remeshing with curvature sensitivity.

complex optimization. However, the methods in this frame-
work are sensitive to original vertex distribution. For some
meshes with extremely distorted triangular faces, the meth-
ods do not work well [9]. The neighborhood optimization
framework optimizes the local structure of vertices directly.
Examples are centroidal Voronoi tessellation (CVT) based
and particle-based approaches that are robust to original
vertex distribution. The drawback is the huge computation
cost for local structure optimization [10]. Moreover, these
approaches are sensitive to the curvature variation of the
input mesh. Their performance is not stable in geometric
feature preservation.

This paper considers remeshing that balances geometric
feature preservation and mesh quality improvement. For
this purpose, we propose an adaptively isotropic remeshing
method, which can be classified into the edge reconnection
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Fig. 2. The pipeline of our adaptively isotropic remeshing method. Firstly, the original mesh is inputted; secondly, distorted triangular faces are
checked and refined by sub-remeshing; thirdly, the curvature smoothed field (CSF) is computed to smooth curvature values of the mesh; fourthly, the
histogram analysis is performed on the smoothed curvature values at vertices to provide some statistics; finally, the edge reconnection implements
adaptively isotropic remeshing based on CSF and the histogram analysis result.

category. To improve the robustness for various vertex dis-
tributions, we introduce a curvature smoothed field (CSF)
and use it to control the edge reconnection. According to
the CSF, we design a histogram-based approach for edge
reconnection to improve the distribution of edge lengths of
remeshed models. The size of triangles cross the border of
regions with different curvatures can be controlled to avoid
unstable face distortion and maintain curvature variation.
Figure 1 shows one example where the point density is
proportional to the curvature of the surface. We also design
a sub-remeshing step as a pre-process to handle meshes
with extremely distorted triangular faces. This step is a
local refinement of the distorted faces. The pipeline of our
adaptively isotropic remeshing method is shown in Figure 2,
which consists of initial sub-remeshing, curvature smoothed
field generation, histogram analysis, and edge reconnection.
The method can handle various low-quality, artificially de-
signed meshes. The main contributions of the paper are as
follows.

• We introduce a curvature smoothed field for adap-
tively isotropic remeshing. The field smooths the
curvature of the original mesh. It establishes a contin-
uous curvature distribution which guides to reduce
the distortion of edge lengths during the remeshing
process.

• We design a histogram-based edge reconnection
scheme based on the CSF to automatically improve
the edge length distribution of the remeshed model,
which achieves the consistency between vertex den-
sity and curvature variation.

• We present a local refinement based pre-process step
(sub-remeshing) to handle meshes with extremely
distorted triangular faces. This can improve the ro-
bustness and efficiency of the remeshing algorithm.

The rest of the paper is organized as follows. Sec. 2
reviews some classical remeshing methods. Sec. 3 introduces
the curvature smoothed field, followed by the histogram-
based edge reconnection method in Sec. 4. We report our
experimental results in Sec. 5 to show the effectiveness and

efficiency of the proposed method. Sec. 6 concludes the
paper.

2 RELATED WORKS

The problem of remeshing has been studied extensively
and many methods have been developed. In this sec-
tion, we briefly review three categories of remeshing: edge
reconnection-based, CVT-based, and particle-based meth-
ods.

Edge reconnection-based methods rebuild the connectiv-
ity of vertices to realize remeshing. Basic operations used
to perform the reconnection process are edge split, edge
collapse, edge flip, and vertex relocation. Alliez et al. [11]
proposed a remeshing method to reconnect the vertices of
a mesh based on a principal direction field. Jiao et al. [12]
proposed a remeshing framework with anisotropic mesh
adaptation for dynamic surface meshes. Dunyach et al. [13]
presented an adaptively isotropic remeshing approach to
balance process efficiency, mesh quality, and curvature sen-
sitivity. It considers the influence of curvature changes in the
mesh such that the edge lengths of remeshed triangles re-
spect the curvature values. Dapogny et al. [14] implemented
adaptive remeshing in an implicitly-defined domain. Narain
et al. [15] designed an adaptive remeshing method for
cloth simulation. Dassi et al. [16] proposed an optimization-
based remeshing method for CAD surfaces, which outputs
curvature adapted anisotropic surface meshes with a low
number of faces. Wang et al. [17] proposed an isotropic
remeshing method by removing large and small angles. Xu
et al. [10] designed a new edge reconnection strategy to
reduce the occurrence of obtuse angles. It does not pursue
the strictly isotropic property. Instead, it just removes obtuse
triangles from the remeshing result and generally cannot
assure global or local isotropic results. Verhoeven et al. [18]
introduced a remeshing method to compute a quad dom-
inant representation for the developable mesh. It utilizes
the principal curvature field to guide the edge reconnection.
The remeshing effectively simplifies the representation of
the original mesh while keeping geometric features. Liu
et al. [19] presented a robust remeshing method for mesh
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simplification. It can generate high-quality meshes with
lower approximation errors. Hu et al. [20] provided a novel
divide-and-conquer methodology for manifold-constrained
geometric optimization tasks, including compatible remesh-
ing, quadrilateral mesh optimization, and minimum angle
improvement. In general, these methods do not require
complex optimization; their computation cost is relatively
low and convenient to implement. However, the adaptive
process of these methods is sensitive to the point distribu-
tion of the input mesh, especially in regions with significant
curvature variations.

CVT-based methods use the Voronoi Diagram or its dual
processing, Delaunay triangulation, to achieve remeshing.
Such methods optimize the mesh structure by Voronoi cell
programming [21]. Alliez et al. [22] proposed an isotropic
remeshing method by Delaunay triangulation. Yan et al. [23]
introduced Restricted Voronoi Diagram (RVD) computation
to optimize Voronoi cells. The method was further improved
by the farthest point optimization [24]. Goes et al. [25]
proposed a weighted triangulation method with diagram
optimization. Liu et al. [26] designed a Delaunay remeshing
method with intrinsic control. Ye et al. [27] extended CVT to
geodesic-based CVT for remeshing. Zheng and Tan [28] pro-
posed a parallel implementation of CVT on GPU. Usually,
the CVT-based methods can produce high quality output
meshes with Voronoi Diagram optimization, but they are
sensitive to the regions with sharp curvature changes. Using
the intrinsic metric control can reduce such influences [26]
[27], but the process becomes more time-consuming. Levy
et al. [29] proposed an anisotropic remeshing method by
transforming the 3D anisotropic space into a higher di-
mensional isotropic space. The curvature-adapted mesh is
obtained by centroidal Voronoi tessellation (CVT) in this
high dimensional space. Based on the similar idea, Dassi
et al. [30] presented an intrinsic anisotropic remeshing in
R6 space. It reduces the production of flipped triangles.
Su et al. [31] proposed to utilize conformal and normal
cycle parameterization to implement curvature adaptive
surface remeshing. The quality of the result depends on
the compactness of the original mesh. Yi et al. [32]proposed
a practical Delaunay mesh simplification. It can transfer
arbitrary manifold triangle mesh to fit user-specified reso-
lution while meeting the local Delaunay condition. Zhang
et al. [33] proposed a remeshing method with several hard
constraints, including bounding approximation errors and
ensuring Delaunay conditions. Lv et al. [34] introduced
isotropic resampling for mesh reconstruction. The obtuse
triangles are effectively reduced to fit the Delaunay condi-
tions. Hou et al. [35] proposed a method to compute the
restricted Voronoi Diagram on the signed distance field. It
can naturally work with CVT to optimize raw meshes while
improving efficiency.

Particle-based methods are more direct approaches for
remeshing, which perform vertex and structure optimiza-
tion in local regions. Compared to CVT-based methods,
particle-based methods do not compute the Voronoi Di-
agram, which significantly improves computational effi-
ciency. Premvzoe et al. [36] proposed a particle-based
method for fluid simulation. Hieber et al. [37] presented a
particle-based simulation for human organ material models.
Meyer et al. [38] constructed a dynamic particle system to

Fig. 3. Left: 1-ring neighborhood region of vertex xi; right: two angles for
the computation of the cotangent weight.

implement the multi-material volumes. Sullivan [39] pre-
sented several applications of particle-based discrete ele-
ment modeling. Takamatsu et al. [40] presented a practical
solution to fast animation of viscoelastic fluids by particle-
based simulation. Zhong et al. [41] proposed a particle-
based anisotropic remeshing method in a high dimensional
space. Cheng et al. [42] proposed an adaptive refinement
for particle-based remeshing. Zhong et al. [43] introduced a
unified particle-based formulation for mesh reconstruction.
Basically, particle-based methods are widely used for dy-
namic remeshing tasks due to their computational efficiency.
However, the methods are sensitive to sharp curvature
variations and easily trap into a local minimum.

Our adaptively isotropic remeshing method basically
belongs to the first category while utilizing the CSF to
control edge lengths during remeshing. Compared to the
classical adaptive remeshing methods, the CSF smooths the
curvature values and thus improves the robustness to the
quality of the original mesh. The proposed method keeps
the advantages of edge reconnection-based methods and is
robust in handling meshes with different vertex distribu-
tions. With the histogram-based scheme, it achieves a good
balance between geometric feature preservation and mesh
quality improvement.

3 CURVATURE SMOOTHED FIELD

Our goal is to remesh an input mesh such that the mesh
quality is improved and meanwhile the geometric feature
is well preserved. To realize geometric feature preservation,
the vertices should be appropriately distributed in space to
respect the curvature variations. More vertices are allocated
to the regions with high curvature. Consequently, the area
of triangular faces should be proportional to the curvature
values. Such a property is called curvature sensitivity. Hence
the edge reconnection should take the curvature values of
the input mesh into account. To improve the mesh quality,
the isotropic property is sought. It means that all triangular
faces should be approximately equilateral triangles with a
similar area locally. Obviously, it is contradictory to keep
geometric features and improve the mesh quality simultane-
ously. Thus the adaptively isotropic remeshing is proposed
to balance the two requirements.
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Fig. 4. Comparison of curvature fields by color maps. Left: the initial
curvature field; right: the CSF.

Our basic idea of adaptively isotropic remeshing is to
control the area changes of triangles in the regions with dif-
ferent curvature values. A common approach is to define a
new metric in a high dimensional space where the influence
of geometric features is considered. Then the isotropic result
in the high dimensional space gives an adaptively isotropic
result in the original Euclidean space. Note that the related
values such as curvature for specific geometric feature repre-
sentation does not necessarily change continuously between
adjacent regions, which may produce distorted faces. We
thus propose to construct a curvature smoothed field to
solve the problem.

We begin with computing a curvature value at each
vertex, which forms the initial discrete curvature field S.
Specifically, for vertex xi, we define a normal-based curva-
ture value to be

s(xi) = max
xj∈R(xi)

{arccos 〈N(xi) ·N(xj)〉}, (1)

where s(xi) represents the curvature value at vertex xi,
which is computed from normal vector N(xi) of the mesh
at vertex xi and normal vector N(xj) of the mesh at vertex
xj where xj is in the 1-ring neighborhood R(xi) of xi [44],
as shown in Figure 3 (left). This curvature intuitively repre-
sents how much the surface bends in the local neighborhood
of a vertex.

Next, we smooth the initial curvature field S to gen-
erate a smooth scalar field for the mesh, which defines
the relationship between each vertex to its neighbors. This
is done by introducing the Laplacian with the cotangent
weights [45] [46]:

4si =
∑
j∈Ri

(
wij

wi
· sj)− si, wi =

∑
j∈Ri

wij , (2)

where si and sj are the curvature values at vertices xi
and xj , Ri is the set of indices of vertices in the 1-ring
neighborhood region R(xi), and wij is the cotangent weight
computed by wij = (cotα+cotβ)/2 with two angles α and
β opposite to edge xixj as shown in Figure 3 (right). Note
that this cotangent weight could be negative. To overcome
this issue, we modify the weight as follows:

wij =

{
cotα+cot β

2 , if cotα+ cotβ > 0
η, otherwise

(3)

c

a

b

a

b

c

c

a

b

a

b

c

Fig. 5. Two thin and long triangles on the left, and the results after sub-
remeshing on the right.

where η is a small positive number. In our implementation,
we set η = 0.0001.

The smooth processing is to iteratively update each si in
S:

si ← si + (1− µ) · 4si, (4)

where µ ∈ (0, 1) is a weight controlling the update rate.
The default value of µ is set to 0.5. To avoid the smooth
processing converging to a trivial case that all si become the
same, we choose a vertex vmax that has the biggest value
of si and then another vertex vmin among all vertices not
in the 1-ring neighborhood of vmax, which has the smallest
value of si, and we do not apply the smooth processing to
vmax and vmin. After the smooth processing, the Laplacian
4si approaches zero, implying that the curvature field
reaches an approximately harmonic state, and then the CSF
is achieved. Figure 4 shows the comparison of an initial
curvature field and the CSF. It can be seen that after the
smooth processing, the curvature field becomes smoother.

Remark. The above smooth processing is guaranteed to
converge. The mathematical proof is given in the appendix.

4 ADAPTIVELY ISOTROPIC REMESHING

We are ready to present our adaptively isotropic remeshing
method, which consists of two processes: sub-remeshing
and histogram-based edge reconnection. The sub-remeshing
is pre-processing step that splits long edges to give a coarse
refinement of thin and long triangles. It is introduced to
handle extremely distorted triangles, which helps improve
the robustness and efficiency of the whole algorithm. The
histogram-based edge reconnection is a fine process guided
by the CSF, which reconnects vertices of the mesh to achieve
the adaptively isotropic property and keep curvature sen-
sitivity. Below we elaborate on the details of these two
processes.

4.1 Sub-Remeshing

In some artificially designed meshes, many distorted trian-
gles have uneven edge length distribution. Such triangles
affect the performance of adaptively isotropic remeshing
and even lead to incorrect remeshing results. See Figure 5
for two distorted triangular faces where edge ac has a much
larger length than one of its adjacent edges.
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Fig. 6. Sub-remeshing and adaptively isotropic remeshing. A: input
mesh; B: sub-remeshing result; C: adaptively isotropic remeshing result.

Algorithm 1 Implementation of Sub-Remeshing
1) Input mesh M with {V,E, F} (V: vertices, E: edges,

and F: faces).
2) Compute the average edge length Eave from the

edge set {E}.
3) Detect edges with length (> 2Eave) and insert them

to {Ed}.
4) Collect distorted faces to form set Fd.
5) for e in {Ed}
6) Compute current edge length Ee.
7) Compute # of inserting points n = bEe/Eavec.
8) Insert n points in the current edge & update {V }.
9) Add the faces (sharing the current edge) into Fd.

10) end for
11) for f in {Fd}
12) Find the edge with longest length in face f .
13) Connect the inserting points in the edge to the

points in the other two edges of f according to
the length ratio.

14) If the new edge length> 2Eave, insert new points
to split the edge.

15) Update {V },{E}, and {F} according to new
edges.

16) end for
17) Output M

′
with new {V ′ , E′ , F ′}.

Sub-remeshing divides the edges with long length by
inserting new vertices and reconnects the vertices to form
new edges. The process includes three steps: 1). compute
the average Eave of all edge lengths; 2). for those edges of
the input mesh whose length is larger than 2Eave, divide
them by inserting points; 3). reconnect the vertices in each
of the faces sharing the edges. The reconnection strategy
includes two cases: the triangle includes just one larger
edge and two more edges. For the first case (refer to the
triangle in the first column of Figure 5), we insert new points
to isometrically cut the larger edge with length EL. The
number of points is equal to dEL/Eavee, which makes each
new edge shorter and closer than Eave. We insert points
with the same number into the other two edges. According
to the point order, there is a one-to-one correspondence
between points on the larger edge and other edges. Then,
we connect points in the same order to generate a set of
adjacent quadrilaterals. Finally, we insert a new edge into

each quadrilateral to produce two new triangles. The new
edge should avoid the production of obtuse angles as much
as possible. For the second case (refer to the triangle in the
second column of Figure 5), we also cut the largest edge
of the length EL with the same number of points. The
difference is that we just insert the same number of points
into the second larger edge to establish the correspondence.
Then we generate new triangles with the same method as
case one. We iteratively check the newly generated triangles
and use the reconnection strategy to keep all edges having
length smaller than 2Eave. By inserting new points into
edges with large length, the long edges are split so that their
lengths are in an acceptable range. The implementation of
sub-remeshing is given in Algorithm 1. Figure 6(B) shows
examples of sub-remeshing, where the long edges are split
and the triangular faces are divided into small ones.

4.2 Histogram-based Edge Reconnection

The histogram-based edge reconnection is similar to
isotropic remeshing [13] and mesh optimization [9]. The
difference is that it controls edge lengths guided by CSF,
which gives a smoothed vertex distribution. Precisely, with
a histogram analysis, the reconnection process automatically
controls edge lengths taking the curvature values into con-
sideration. This helps achieve the balance between geomet-
ric feature preservation and mesh quality improvement. In
[13], a similar approach is proposed, which is guided by
a curvature field. Without smoothing of the field, the area
changes of adjacent triangles with different curvature values
may become unstable, and the remeshing result is sensitive
to the positions of vertices.

Our edge reconnection proceeds in the following steps:

1) Compute the curvature values for each vertex and
create CSF by smoothing the values (using Equa-
tions 1-4).

2) Compute the average edge length l of the mesh.
3) Assign a multiplication factor m for each vertex

according to its curvature value obtained from CSF.
4) Split an edge if its length is larger than 5

3 l ×
min{ma,mb} where ma and mb represent the mul-
tiplication factors assigned to the two endpoints of
the edge.

5) Collapse an edge into its middle point if its length is
smaller than 4

5 l ×max{ma,mb} where ma and mb

represent the multiplication factors assigned to the
two endpoints of the edge.

6) Flip the edge to implement valence improvement. If
the flip generates obtuse angles, the flip will not be
processed.

7) If a vertex is not on the boundary of the mesh,
relocate it to the center of its 1-ring neighborhood
on the tangent plane.

Steps 1 and 2 are for initialization. Steps 3 to 7 are for actual
edge reconnection performed iteratively. The basic processes
include split, collapse, flip, and vertex relocation [44]. Fig-
ure 7 shows examples of these processes for remeshing.

One important strategy for achieving adaptively
isotropic remeshing is to properly define the multiplication
factor m for each vertex (see Step 3 in the above procedure).
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Fig. 7. An instance of adaptively isotropic remeshing.

m1 m2 m3 m4 m5

Fig. 8. Histogram-based edge reconnection. {m1, ...,m5} =
{1.8, 1.4, 1.0, 0.8, 0.6}, X axis: curvature; Y axis: number of vertices. The
bins corresponding to m1,m2 and the left half of the bin corresponding
to m3 contain the same number of vertices. Similarly, the bins corre-
sponding to m4,m5 and the right half of the bin corresponding to m3

contain the same number of vertices.

The value of m influences how many new points should
be inserted. When all the m values are equal, adaptively
isotropic remeshing degenerates to isotropic one [44]. To
reflect curvature variation, the value of m is chosen accord-
ing to the curvature distribution. In particular, we group
the curvature distribution into k intervals: [sg−1, sg], g =
1, 2, · · · , k, where k is an odd integer preset by the user.
We then set k values for m : m1,m2, · · · ,mk, respectively.
Then for each vertex pi we establish the following corre-
spondence:

m(pi) = mg if s(pi) ∈ [sg−1, sg] . (5)

To group the curvature distribution, we first compute the
histogram of curvature for all vertices. Then we select the
curvature with the maximal count in the histogram as the
base value (see the red line in Figure 8)). If there have differ-
ent maximal values exist at the same time, we select the one
with the middle position. It balances the global center and
gravity center of curvature statistics as much as possible.
Next we use the base value to form k groups. Specifically,
denote by Tr the total number of vertices whose curvature
is larger than the base value, and by Tl the total number of
vertices whose curvature is not larger than the base value.

We find the partition of the curvature distribution:

[s0, sk] =
k⋃
j=1

[sj−1, sj ] (6)

where s0 and sk are the minimal and maximal curvature
values among all vertices of the mesh, such that there are
2Tl/k vertices whose curvature is in [sl1 , sl) for l ≤ k/2,
and there are 2Tr/k vertices whose curvature is in (sr, sr+1]
for r ≥ k/2.

To set values for mg, g = 1, 2, · · · , k, we let m k+1
2

=
1, which corresponds to the base value of curvature. The
others are distributed at the two sides of 1, corresponding to
the statistical distributions of curvature. To avoid generating
thin and long triangles, the ratio of a triangle’s longest and
shortest edge lengths should be bounded (for example, by√
2 : 1). Thus we set values in {m} to be {1.8, 1.4, 1, 0.8, 0.6}

for k = 5, which is our default value. This can achieve a
good balance in practice. An example is shown in Figure 8.

5 EXPERIMENTS

We evaluate the performance of our adaptively isotropic
remeshing in this section. The experimental point cloud
models were selected from SHREC [47] and ModelNet [48].
We conducted the experiments on a machine equipped with
Intel Xeon W 2133 3.6G Hz, 32 GB RAM, Quadro P620, and
with Windows 10 as its running system and Visual Studio
2019 (64 bit) as the development platform. The evaluation is
performed using various metrics, including geometric con-
sistency, mesh quality, and curvature sensitivity. Quantita-
tive comparisons are also provided in terms of convergence
and runtime.

5.1 Geometric Consistency

Geometric consistency is one of the most important metrics
for remeshing. If the geometric consistency between the
original mesh and the remeshing result can not be kept, it
means that shape fidelity is broken. According to the bench-
mark [8], Hausdorff distance is often utilized to measure the
geometric consistency. The formula is

H(MO,MR) = max{ max
pi∈MO

{d(pi,MR)}, max
qj∈MR

{d(qj ,MO)}},
(7)
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Fig. 9. Comparisons of different remeshing methods for SHREC models (9,000∼13,000 vertices).

where MO and MR represent the original mesh and the
remeshing result, and the Hausdorff distance H between
MO and MR is computed from the maximum distance d
between vertices and meshes. To achieve more accurate
H , the distance d is computed by the MLS surface map-
ping [50]. The Hausdorff distance provides the maximum
error measurement between two meshes. We also add the
mean distance measurement to evaluate the average error
to be a supplement:

M(MO,MR) =
1

n

n∑
j=1

d(qj ,MO), qj ∈MR, (8)

whereM is the mean distance betweenMO andMR, n is the
number of points ofMR. The Hausdorff and mean distances
are used to quantitatively describe the geometrical consis-
tency between the meshes. We perform a quantitative anal-
ysis of geometric consistency for different remeshing meth-
ods, including adaptive remeshing [13], centroidal Voronoi
tessellation(CVT) [49], particle-based resampling [43], and
Delaunay-GPU [28]. The adaptive remeshing balances the
isotropic property and curvature sensitivity in reconnecting
the original mesh. It is an extension of isotropic remesh-
ing [23]. The CVT is a widely used solution for mesh

reconstruction and remeshing. It optimizes Voronoi cells of
a mesh to obtain the isotropic property. By contrast, the
particle-based resampling achieves a similar function by
adjusting points’ positions directly.

To perform a fair comparison, we let different remeshing
methods output a similar number of vertices (i.e., in a
range of 9,000∼13,000 points). In Figures 9 and 10, we
display remeshing results generated by different methods.
The Hausdorff and mean distances are reported in Tables 1
and 3. The label “Nan” represents the illegal value that is
produced by a program crash or a significant error result.
Specifically, our method obtains smaller Hausdorff and
mean distances for 70% test meshes. The reason is that our
method keeps more points in their original positions and
maps the new points into the mesh with lower MLS errors. It
avoids extreme displacements for original points. Therefore,
our method achieves better geometric consistency.

5.2 Mesh Quality
The quality of the remeshing result can be evaluated by
a triangle quality measurement function Q(t) ∈ [0, 1] for
triangle t:

Q(t) =
6√
3
· St
ptht

(9)
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Fig. 10. Comparisons of different remeshing methods for ModelNet models (9,000∼13,000 vertices). Red labels mean that the related method
crashed during execution.

TABLE 1
Geometric consistency measurements (Hd and Md) of different methods for SHREC models.

Methods Adaptive Remeshing CVT Particle Delaunay-GPU Our
Models\Measurement Hd Md Hd Md Hd Md Hd Md Hd Md

centaur 0.0101 0.00056 0.2594 0.00596 0.2519 0.16774 0.01832 0.00025 0.0078 0.00042
crane 0.0139 0.00047 0.2296 0.00389 0.2263 0.06133 0.01755 0.00133 0.0046 0.00025

elephant 0.0197 0.00094 0.1259 0.04261 0.1265 0.04334 0.06601 0.00055 0.0165 0.00094
hand 0.0105 0.00047 0.1911 0.01094 0.1916 0.01372 0.02035 0.00025 0.0088 0.00037

tyrannosaurus 0.0082 0.00035 0.3166 0.00328 0.2872 0.02012 0.01301 0.00094 0.0061 0.00028
ant 0.0122 0.00051 0.1656 0.00738 0.1738 0.01554 Nan 0.06352 0.0116 0.00049
bird 0.0104 0.00042 0.2426 0.00503 0.2415 0.01699 Nan 0.06981 0.0104 0.00034

crocodile 0.0235 0.00073 0.2245 0.07449 0.2081 0.00895 Nan 0.05484 0.0119 0.00071
light 0.0136 0.00144 0.2701 0.11083 0.2701 0.02982 Nan 0.05495 0.0108 0.00065

spider 0.0097 0.00055 0.1871 0.00745 0.1797 0.01429 Nan 0.05447 0.0083 0.00045

TABLE 2
Mesh quality measurements (Qavg and Qmin) of different methods for SHREC models.

Methods Adaptive Remeshing CVT Particle Delaunay-GPU Our
Models\Measurement Qavg Qmin Qavg Qmin Qavg Qmin Qavg Qmin Qavg Qmin

centaur 0.85 Nan 0.84 0.33 0.73 Nan 0.82 0.47 0.85 0.51
crane 0.87 Nan 0.84 0.15 0.71 Nan 0.82 0.48 0.84 0.49

elephant 0.82 Nan 0.82 0.17 0.74 Nan 0.82 0.47 0.83 0.46
hand 0.84 Nan 0.85 0.28 0.73 Nan 0.82 0.47 0.86 0.51

tyrannosaurus 0.86 Nan 0.85 0.33 0.75 Nan 0.82 0.48 0.85 0.45
ant 0.84 Nan 0.85 0.31 0.68 Nan 0.82 0.47 0.84 0.52
bird 0.81 Nan 0.85 0.29 0.7 0.14 0.82 0.47 0.82 0.49

crocodile 0.82 Nan 0.84 0.16 0.67 0.11 0.82 0.48 0.85 0.47
light 0.87 Nan 0.82 0.14 0.71 Nan 0.82 0.47 0.84 0.51

spider 0.84 Nan 0.85 0.33 0.71 0.11 0.82 0.49 0.86 0.52

where St is the area of triangle t, pt is half of the perimeter
of t, and ht is the length of the longest edge length [7]. It
provides a quantitative analysis of the isotropic property.
Hence Q(t) = 1 means that the triangle is equilateral. We
compute the average value Qave and minimum value Qmin
over all triangles for different remeshing methods, which are
reported in Tables 2 and 4. It is observed that the adaptive
method could produce incorrect edges in regions with sharp
curvature changes. For some models, the remeshing process
of the adaptive remeshing method may even crash. For CVT
and Delaunay-GPU remeshing methods, Voronoi cells are
optimized and the mesh quality is improved theoretically.

However, they do not perform stably for mesh models
with sharp curvature changes and extreme obtuse trian-
gles, in which incorrect cell optimization may occur. Our
method provides a feasible solution consistently. It achieves
a balance between isotropic property and geometric feature
preservation. Our method obtains the best Q(t) values for
53% test meshes, while the Delaunay-GPU [28] (the state-
of-the-art) achieves the best Q(t) values for only 22% test
meshes. Figure 11 uses color maps to display the minimum
inner angle for the results generated by the state-of-the-
art and our method. The color changes from red to blue
in our remeshing results are smoother, which means that
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Fig. 11. Color maps of remeshing results for mesh quality visualization. First row: original meshes; second row: Delaunay-GPU remeshing results;
third row: our remeshing results. More geometric details are kept and isotropic property is improved by our method.
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Fig. 12. Some curve-based charts of remeshing results. X axis: curvature values computed by Equation 1; Y axis: triangle area. Adaptive: adaptive
remeshing [13]; CVT: centroidal Voronoi tessellation [49]; Particle: particle-based resampling [43]; D-GPU: Delaunay-GPU [28].

our method achieves a better balance between the isotropic
property and geometric feature keeping. Conversely, the
Delaunay-GPU method [28] loses many geometric details
and fails to obtain curvature adaptation in the remeshing
results.

5.3 Curvature Sensitivity

To analyze the performance of adaptive remeshing with re-
spect to curvature, we compute a curve-based chart to show
the relationship between triangle areas and curvature values
of the remeshing results. Ideal curvature-based remeshing
is expected to have the property that the area of triangles
should decrease monotonically with the increasing curva-
ture. That is, more vertices are distributed in regions with
high curvature values. To compare the monotonicity for
different methods in the chart, we normalize triangle areas

from [Amin, Amax] into [0, 1], where Amin and Amax repre-
sent the minimal and maximal triangle areas of the mesh,
respectively. The curves displayed in Figure 12 visualize
such monotonicity behavior of different methods applied to
SHREC and ModelNet models. If a curve does not exhibit a
monotonic shape, it implies that the corresponding remesh-
ing method is not curvature sensitive. From the figure, we
can see that the curves generated by our method have better
monotonicity, which means that our method achieves better
curvature sensitivity.

To estimate the performance of geometric feature preser-
vation, we compare our method and adaptive remesh-
ing [13]. Some examples are shown in Figure 13. It is clear
that our method achieves a better balance between the
isotropic behavior and geometric feature preservation with
a similar target number of vertices, even though the two
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Original Mesh Adaptive Remeshing Ours

Fig. 13. Comparisons of adaptive remeshing [13] and our method. The histograms represent the interior angle distributions of meshes. With similar
target numbers of vertices and faces, our remeshing results keep geometric features better.
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Fig. 14. More examples. Left: original meshes; right: results by our remeshing methods.
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TABLE 3
Geometric consistency measurements (Hd and Md) of different methods for ModelNet models.

Methods Adaptive Remeshing CVT Particle Delaunay-GPU Our
Models\Measurements Hd Md Hd Md Hd Md Hd Md Hd Md

bed 0.52825 0.01261 0.57317 0.07459 0.52917 0.00554 0.30601 0.04294 0.3133 0.00841
bottle 0.28981 0.00053 0.01666 0.00049 0.03771 0.00067 0.01427 0.00024 0.0128 0.00041

bathtub 0.26766 0.00249 0.42598 0.08404 0.32563 0.00233 Nan Nan 0.2688 0.00285
bowl 0.25844 0.00394 0.26026 0.00961 0.25958 0.00539 0.25666 0.00672 0.1038 0.00461
car 0.22766 0.00351 0.50472 0.03316 0.34477 0.00817 Nan Nan 0.2271 0.00334

airplane 0.04249 0.00096 0.39792 0.11671 0.06676 0.00043 0.30751 0.05903 0.0147 0.00073
person 0.02533 0.00165 0.05651 0.00185 0.43426 0.00444 0.02362 0.00042 0.0211 0.00138

sofa 0.03021 0.00141 0.27405 0.06759 0.21571 0.00763 Nan Nan 0.0975 0.00119

TABLE 4
Mesh quality measurements (Qavg and Qmin) of the remeshing results for ModelNet models.

Methods Adaptive Remeshing CVT Particle Delaunay-GPU Our
Models\Measurement Qavg Qmin Qavg Qmin Qavg Qmin Qavg Qmin Qavg Qmin

bed Nan Nan 0.76 0.31 0.72 Nan 0.82 0.48 0.83 0.23
bottle 0.89 0.25 0.85 0.26 0.74 Nan 0.82 0.47 0.91 0.11

bathtub Nan Nan 0.82 0.15 0.77 Nan Nan Nan 0.81 0.26
bowl 0.88 0.21 Nan 0.24 0.74 Nan 0.82 0.48 0.91 0.59
car Nan Nan 0.84 Nan 0.76 Nan Nan Nan 0.83 0.32

airplane Nan Nan 0.82 Nan Nan Nan 0.82 0.48 0.71 0.29
person 0.84 Nan 0.81 Nan 0.76 Nan 0.82 0.48 0.76 0.32

sofa 0.83 Nan 0.83 Nan 0.76 Nan Nan Nan 0.84 0.16

Fig. 15. Convergence curves of the smooth processing for generating
CSF for different models. Left picture: results in SHREC models; right
picture: results in ModelNet models.

methods share a similar edge reconnection strategy. This is
benefited of the CSF.

5.4 Comprehensive Analysis

We have used different metrics to show the performance
of our method, including Hausdorff and mean distances
for geometric consistency, triangle quality measurement for
mesh quality, and curve monotonicity for curvature sensitiv-
ity. All results show that our remeshing method generally
achieves better performance. More complicated instances
are depicted in Figure 14, which further demonstrate the
performance of our method.

Figure 15 shows the convergence curves of the smooth
processing for generating the CSF for SHREC and Model-
Net models. To analyze the convergence, we compute the
average value 4si of 4si of Equation 4. It can be seen that
most test models can achieve4si < 0.005 after 8 iterations.

Fig. 16. Run time chart for different methods. Y axis represents time
(seconds); X axis is the number of input points (1k). Adaptive: adap-
tive remeshing [13]; CVT: centroidal Voronoi tessellation [49]; Particle:
particle-based resampling [43]; D-GPU: Delaunay-GPU [28]; Ours: our
adaptively isotropic remeshing without parallel acceleration; Ours-P: our
adaptively isotropic remeshing with parallel acceleration.

In Figure 16, we show a time cost chart for different
methods, in which the number of vertices in the remeshing
results is controlled in 9000∼13000). The Delaunay-GPU
achieves the fastest speed for remeshing tasks. The reason
is that it utilizes GPU-based parallel computing to improve
the Delaunay triangulation. However, the isotropic property
and geometric consistency decrease to a certain extent. In
contrast, our method can achieve a better balance.

Although our method has advantages in adaptively
isotropic remeshing, some limitations exist. First, for some
manually edited meshes, incorrect connections break the
manifold property cannot be completely avoided, though
the sub-remeshing with default grid repair functions re-
duces the probability of its occurrence. In Figure 17, we
show a few failure examples of our method. Second, the
proposed remeshing method cannot provide real time per-
formance. According to the statistics of the runtime report,
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Fig. 17. Some failure examples of our remeshing method. The manifold
property is broken in some regions where incorrect connections occur.
Left: original meshes; right: remeshing results.

TABLE 5
Runtime statistics of our method with different numbers of input and
output points. The top row represents the number of input points (5k,

10k, 50k, 100k). The left column represents the number of output
points (1k, 5k, 10k, 50k).

5k 10k 50k 100k

1k 26.2s 34.06s 100.96s 150.36s
5k 32.5s 52.256s 161.68s 189.63s
10k – 61.88s 200.68s 249.36s
50k – – >5min >5min

more time costs are required for edge reconnection and
vertex list updating. Table 5 shows our method’s runtime
statistics with different input and output points.

6 CONCLUSION

We propose an adaptively isotropic remeshing method to
improve the mesh quality while keeping important geo-
metric features. To keep geometric features, we construct a
curvature smoothed field (CSF) to represent the curvature
variation while making the curvatures change smoothly
across the whole mesh. To improve mesh quality, we
propose a histogram-based edge reconnection with sub-
remeshing. The isotropic property can be reconstructed even
for a mesh with extremely distorted triangular faces. Based
on the CSF, our framework is able to obtain adaptively
isotropic remeshing results efficiently. Experiments show
that our method achieves better performance in several
evaluation metrics, including geometric consistency, mesh
quality measurement, and curvature sensitivity estimation.
Compared to the traditional edge reconnection strategies,
our method achieves a better balance between mesh quality
improvement and geometric feature preservation.
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APPENDIX

Here we analyze the convergence of the smooth processing
for the CSF generation.

Let In−2 be the identity matrix of size (n− 2)× (n− 2)
and

An =


0 a12 a13 · · · a1n
a21 0 a23 · · · a2n

...
...

...
. . .

...
an1 an2 an3 · · · 0

 (10)

where aij =
wij
wi

for j ∈ Ri; otherwise, aij = 0; and

wi, wij , Ri are defined in Equations 2 and 3.
Without loss of generality, we assume that vmax and

vmin mentioned in Section 3 are in the last two entries in
the vertex list of the mesh. Let An−2 be the matrix of size
(n − 2) × (n − 2) obtained from An by removing the last
two columns and the last two rows. Then the iteration of
the smooth processing defined in Equation 4 can be written

s
(k+1)
1

...
s
(k+1)
n−2

 = (In−2 + (1− µ)(An−2 − In−2))


s
(k)
1
...

s
(k)
n−2



+B = (µIn−2 + (1− µ)An−2)


s
(k)
1
...

s
(k)
n−2

+B

where the superscript ‘k’ represents the k-th iteration, and
B is a vector:

B = (1− µ)


a1,(n−1) a1n
a2,(n−1) a2n

...
...

a(n−2),(n−1) a(n−2),n


[
sn−1
sn

]
. (11)

Let G = [gij ] = µIn−2 + (1 − µ)An−2. Then G satisfies
the following properties:

(1)
n−2∑
j=1
|gij | = µ + (1 − µ)

n−2∑
j=1

aij ≤ 1 for any i ∈

{1, 2, · · · , n− 2}.
(2) G is irreducible, which means that for any i, j ∈

{1, · · · , n − 2} there exists a chain of indices
i1, i2, · · · , ik such that Ai,i1 6= 0, · · · , Aik−1,ik 6= 0
and Aik,j 6= 0. This is because the model we are
considering is a mesh with only a single component.

(3) There exists at least one h ∈ {1, · · · , n−2} such that
n−2∑
j=1
|ghj | = µ + (1 − µ)

n−2∑
j=1

ahj < µ + (1 − µ) = 1.

This is due to the fact that vmax and vmin have at
least two adjacent vertices, implying that there are
some non-zero ah,n−1 or ah,n.

Now consider matrix λIn−2 − G = (λ − µ)In−2 − (1 −
µ)An−2. It is noted that for λ 6= µ, matricesG and λIn−2−G
have zero elements in exactly the same locations, which tells
that λIn−2 −G is also irreducible.

Moreover, for row i of matrix (λ−µ)In−2−(1−µ)An−2,
the diagonal entry has

|(λ− µ)| = |(λ− 1) + (1− µ)| ≥ 1− µ

for |λ| ≥ 1, and the other entries have

|(1− µ)
∑
j 6=i

aij | = (1− µ)
∑
j 6=i

aij ≤ 1− µ.
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There exists an h such that

|(1− µ)
∑
j 6=h

ahj | = (1− µ)
∑
j 6=h

ahj < 1− µ.

Therefore for |λ| ≥ 1, matrix λIn−2 − G is diagonally
dominant (by rows).

It thus follows from [51] that for |λ| ≥ 1, matrix
λIn−2 − G is nonsingular since it is irreducible and diag-
onally dominant.

Note that the eigenvalues λ of matrix G are all and
only the roots of det(λIn−2 − G) = 0. Since λIn−2 − G
is nonsingular for |λ| ≥ 1, all of the eigenvalues of G are
in the interior of the unit circle. Hence the spectral radius
of G is less than 1, which concludes that the iteration of the
smooth processing defined in Equation 4 converges.
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