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KSS-ICP: Point Cloud Registration Based on
Kendall Shape Space
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Abstract— Point cloud registration is a popular topic that has
been widely used in 3D model reconstruction, location, and
retrieval. In this paper, we propose a new registration method,
KSS-ICP, to address the rigid registration task in Kendall shape
space (KSS) with Iterative Closest Point (ICP). The KSS is a
quotient space that removes influences of translations, scales, and
rotations for shape feature-based analysis. Such influences can be
concluded as the similarity transformations that do not change
the shape feature. The point cloud representation in KSS is
invariant to similarity transformations. We utilize such property
to design the KSS-ICP for point cloud registration. To tackle
the difficulty to achieve the KSS representation in general, the
proposed KSS-ICP formulates a practical solution that does not
require complex feature analysis, data training, and optimization.
With a simple implementation, KSS-ICP achieves more accu-
rate registration from point clouds. It is robust to similarity
transformation, non-uniform density, noise, and defective parts.
Experiments show that KSS-ICP has better performance than
the state-of-the-art. Code (vvvwo/KSS-ICP) and executable files
(vvvwo/KSS-ICP/tree/master/EXE) are made public.

Index Terms— Kendall shape space, point cloud registration.

I. INTRODUCTION

WITH the development of 3D scanning technology, 3D
point clouds have been widely used in different appli-

cations such as autopilot [1], [2], architectural design [3],
digital animation production [4], [5], bioinformatics [6], [7],
and medical treatment [8]. As a fundamental process for
the applications, point cloud registration has been researched
for many years. The target of the registration is to find the
correspondence between two point clouds or build the trans-
formation matrix from one point cloud to another. It provides
basic technical support for point cloud location [9], [10],
reconstruction [11], and detection [12].

There are some influences that increase the difficulty of the
registration process, including similarity transformation, non-
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uniform density, noise, and defective part. These influences
are explained as follows. The similarity transformation is a
mathematical concept that means the transformation would
not change the shape feature of the corresponding object.
Therefore, it is also called shape-preserving transformation,
including translation, rotation, and scaling. During the scan-
ning, it cannot be guaranteed that raw point clouds have
the uniform location, rotation, and scale. The influence pro-
duced by similarity transformation for the point cloud can
not be avoided. Affected by occlusions, illuminations, dust
in the wild, and different scanning sources (cross-source
problem [13]), points with non-uniform density, noise and
defective parts are scanned into point clouds at the same
time. These disturbing factors increase the probability of error
correspondence’s production. Such influences bring the main
challenges in point cloud registration.

To achieve the accurate registration result, the aforemen-
tioned influences should be reduced. As a well-known method,
Iterative Closest Point (ICP) [14] is proposed to reach the
target. The ICP is a point-to-point scheme that searches the
correspondence between point clouds by distance measure-
ment. It is simple to implement and can be used in raw point
clouds directly. However, the ICP and its variants [15], [16]
are likely to trap into the local optimum that reduces the
accuracy of the registration process. Recently, deep learning
frameworks [17], [18] are used to build the registration meth-
ods. Such methods learn the correspondence of point clouds
based on large database training with fast computation speed.
However, the influences of similarity transformations can not
be removed theoretically. The frameworks depend on species
of training set. It cannot be guaranteed that local or global
features of input point cloud are learned from certain training
set. Therefore, the classical deep learning frameworks have
good performance in specific data set, but not in practice.
For all methods mentioned before, different scales cannot be
unified with an effective solution.

In this paper, we propose a new point cloud registration
method, KSS-ICP, to achieve more accurate and robust reg-
istration results. It is inspired by Kendall shape space (KSS)
theory [19]. The KSS is a manifold space, which is constructed
by discrete point sequences. In KSS, influences of translation,
scale, and rotation are removed. In other word, the KSS-based
representation of point cloud is invariant to the similarity trans-
formation which covers the mentioned influences. Benefited
from such property, we propose a point cloud representation
to map a point cloud into the KSS. The representation keeps
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Fig. 1. Instances of KSS-ICP registration results. Point cloud models
are scanned by iphone12pro in Nanyang Technological University. In third
column, the red point clouds represent the source point clouds; the blue point
clouds are target ones. Registration results show that our method can align
raw point clouds from source to target.

Fig. 2. Color maps of corresponding errors (point distance) between source
point clouds and target ones (red to blue: high to low). First row: before
registration; second row: after registration. It is clear that the corresponding
errors approach zero after our registration.

the geometric consistency with the original point cloud while
reducing influences of non-uniform density, locations, and
scales. Based on the representation, we design an alignment
process to achieve the best rotation parameters between point
clouds. Combining the alignment and the ICP method, accu-
rate registration can be achieved which is robust to similarity
transformations, non-uniform density, noise, and defective
parts. Some instances are shown in Figures 1 and 2. The
contributions of our work are summarized as follows.

• A point cloud representation based on KSS is proposed.
It provides a regular form for different point clouds,
which can maintain a certain point number and achieves
uniform point density. It therefore reduces influences of
point density, locations, and scales.

• An alignment for point clouds without defective or miss-
ing parts is designed based on the proposed point cloud
representation. Benefited from the invariant property for
similarity transformations, the registration result can be
computed with a simple implementation in KSS. It is
also robust to noise in point clouds without complicated
feature extraction.

• A partial-complete alignment scheme is constructed as a
supplementary scheme to deal with incomplete geometric
structures. With an additional searching in a candidate set,
a point cloud with incomplete geometric structure can be
aligned to the complete one scanned from the same 3D
object.

The pipeline of KSS-ICP is shown in Figure 3. The rest of
the paper is organized as follows. In Sec. II, we review existing
classical methods for point cloud registration. In Sec. III,
we introduce the point cloud representation based on KSS,
followed by the alignment process in Sec. IV. We demonstrate
the effectiveness and efficiency of our method with extensive
experimental evidence in Sec. V, and Sec. VI concludes the
paper.

II. RELATED WORKS

There are a large number of papers for registration, which
bring some difficulties to show the complete related works.
We focus on the rigid point cloud registration task and intro-
duce some representative methods in this part. Such methods
are classified into three categories: distance metric-based reg-
istration, feature-based registration, and deep learning-based
registration.

Distance metric-based registration methods achieve regis-
tration results by point distance optimization. The ICP and its
variants belong to this category, including original ICP [14],
LM-ICP [15], EM-ICP [16], Scale-ICP [20], GMM-ICP [21],
BiK-ICP [22], and Fast-ICP [23]. More ICP variants are
discussed in reviews [24], [25]. The drawback of such methods
is that the registration process traps into the local optimum
with high probability. Some methods attempt to solve the
problem based on Branch-and-Bound(BnB) scheme [26]. The
BnB scheme is a tree structure-based algorithm and this is used
to simplify alignment in SO(3) (3D rotation group). The rep-
resentative methods include L2 error optimization [27], stere-
ographic projection [28], consensus set maximization [29],
camera pose alignment [30], and globally optimal solution(Go-
ICP) [31]. However, most of them are sensitive to point clouds
with different scales. With some large rotations(>45◦ by each
axis), the accuracy of registration may be reduced.

Feature-based registration methods build the correspon-
dence of point clouds based on point features. Such methods
avoid redundant searching in SO(3) by feature alignment.
In theory, the feature alignment keeps better geometric con-
sistency during the registration process. The representative
methods include normal distributions transform [32], [33],
shape context [34], [35], sub-maps [36], Rotational Projection
Statistics features [37], covariance matrices [38], and point
feature histograms [39], [40], [41]. The drawback of such
methods is that the performance of registration is sensitive
to the quality of the feature. Noise and defective parts in
point clouds reduce the accuracy and robustness of features
inevitably. For point clouds with large volumes, the huge
calculation of feature extraction also affects the practicality
of the methods.

Deep learning-based registration methods are becoming
more popular recently. Using the deep correspondence from
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Fig. 3. The pipeline of KSS-ICP. In pre-shape space, the influence of rotation is not removed. Therefore, representations of source and target point clouds
in the space have different positions. Our registration is to remove the influence which can be regarded as a practical simulation of KSS mapping. When the
two point clouds can be aligned into a same location in pre-shape space, it means that they can be mapped into a same reflection in KSS.

the data training, registration results can be achieved with
a balance between efficiency and robustness. Such meth-
ods include PointNetLK [17], Deep ICP [42], Deep Closest
Point [43], PRNet [44], IDAM [45], RPM-Net [46], 3DReg-
Net [47], DGR [48], and PCRNet [18]. Although there are so
many works based on deep learning frameworks, some defects
still exist in practice. Firstly, the deep learning framework
trains and learns the deep correspondence between points
from local patches matching in most cases. It tends to build
a local but not global correspondence result, which reduces
the performance in registration for point clouds with a large
difference in poses or rotations. Secondly, without reasonable
pre-processing, the deep learning framework can not reduce
the influence of different scales of point clouds. Finally,
the deep learning framework is sensitive to the non-uniform
density and this affects the accuracy of registration.

The KSS-ICP belongs to the first category. It searches
the registration result in KSS. The influences of similarity
transformations are reduced by KSS-ICP. With the proposed
alignment in a global view, KSS-ICP avoids the local optimum
as much as possible. In the following sections, we discuss the
details of KSS-ICP.

III. POINT CLOUD REPRESENTATION

As mentioned before, the key property of KSS is that the
influence of similarity transformation can be removed. For
point cloud registration, the property can be used to align point
clouds with various similarity transformations. The KSS pro-
vides a shape analysis tool to measure different shape features
of point clouds. Once the point cloud-based representation
is provided in KSS, the related shape analysis tool can be
used to process the registration task without the influence
of similarity transformation. In this section, we introduce the
KSS theory and the necessary conditions of representation in
KSS. Following the conditions, we provide the point cloud
representation based on KSS, which is inspired by [49].

A. Kendall Shape Space (KSS)

Firstly, we provide a brief introduction for KSS. The KSS
is a Riemannian manifold with the quotient space property.
It can be used to represent the shape features of discrete point
sequences. In KSS, a point sequence is invariant to similarity

Fig. 4. An instance of shape feature-based measurement in KSS. The 2D
point sequences a and b takes different shape features. The shape feature
should not be affected by the similarity transformations, which means that the
objects in blue dotted box (or red one) have same shape feature. In KSS, such
objects share same representation. Therefore, the geodesic distance (purple
dotted curve) in KSS can be regarded as a reasonable shape feature-based
measurement between a and b.

transformation. The mathematical definition of KSS is shown
as

M = Rm×k
\ {0} ,

M/G = K, (1)

where M is a Riemannian manifold constructed by discrete
point sequences. The dimensions of M are m×k (k points with
m dimensions). The G is a group of similarity transformations.
K represents the KSS constructed by M/G, which is still a
Riemannian manifold. The operator / is the quotient group
computing. It means that M is mapped into K while removing
the influence of G. Once we define and implement the map-
ping, the influence of similarity transformation is removed.
An instance is shown in Figure 4. To map a discrete point
sequence into the KSS, a set of pre-processing operations are
needed:

Ks(a) = (x(1) − x̄, . . . , x(k) − x̄)/s(a),

x̄ =
1
k

k∑
j=1

x( j), s(a) = (

k∑
j=1

∥∥x( j) − x̄
∥∥)1/2, (2)

where a is a discrete point sequence with point number k.
Using the center x̄ to uniform the discrete point sequence,
the influence of different locations and scales is removed.
A middle shape space Ks between M and K is achieved,
called pre-shape (i.e., not KSS yet) space [19]. In most
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cases, it is difficult to achieve the representation of discrete
point sequence in K. However, the representation and related
measurement in K can be simulated in Ks (as a sufficient
approximation in practice), represented as

dK (K (a), K (b)) = inf
O∈SO(3)

dKs (Ks(a), O ◦ Ks(b)) , (3)

where dK is the measurement in K, dKs is the measurement
in Ks, and b is another discrete point sequence. Ks(a) and
Ks(b) are representations of a and b in Ks. O is the rotation
from SO(3), which is used to find a match between Ks(a) and
Ks(b). The operator ◦ means that the former transformation
is implemented into the latter object. In this place, it means
to rotate Ks(b) by O . In most cases, it is difficult to achieve
representations (K (a) and K (b)) of discrete point sequences
and related measurement (dK) in K. Equation 3 provides
a roundabout solution to compute the measurement in Ks.
Once the representation of discrete point sequence in Ks is
provided, the computation of dK can be transferred to find the
rotation O and this defines a transformation matrix between
two discrete point sequences. The transformation matrix can
be used to achieve the registration result. Combining the
Equations 2 and 3, the influence of similarity transformation
can be removed.

According to the description of KSS theory, there are some
requirements for the construction of representation in Ks: 1.
point numbers should be equal; 2. weights of points should
be equal; 3. the center should be aligned. In Equation 2,
discrete point sequences should have the same point number k
to achieve the representation in Ks. Each point in the discrete
point sequence has same weight. It means that the point cloud
should have uniform density. The center should be aligned,
otherwise the representations in Ks are not accurate. In order
to meet the above requirements, we provide the construction
of point cloud representation in Ks.

B. Representation in Ks

The construction of the point cloud representation in Ks
includes two parts: 1. simplify the input point cloud into
an alternative one with the same point number and uniform
density; 2. map the alternative point cloud into Ks as the point
cloud representation. For the first part, we utilize a parallel
simplification [50] to achieve the alternative point cloud. Basi-
cally, the simplification can be regarded as a parallel version
of Farthest point sampling (FPS). It is used to adjust point
cloud density and control point number efficiently. It includes
three steps. Firstly, we split the input point cloud into a voxel
structure and this is constructed by voxel boxes with the same
scale. Then, we use the local FPS to parallel simplify the
point cloud in different voxel boxes. Finally, we combine the
simplification results from different voxel boxes to achieve
the simplified point cloud. The simplify point number |P ′

v| in
voxel box v is provided as

|P ′
v| = |Pv| × k/|P|, (4)

where |P| is the point number of point cloud P , |Pv| is the
point number in v. The scale of the voxel box is computed as

Vs = L p/
[

3
√

|P|/2
]
, (5)

Fig. 5. An instance of non-uniform density in a point cloud. Blue points
are original points. Green points are resampling results. Left: points with
non-uniform density around the boundary (red dotted box); Right: non-uni-
form density is removed by parallel resampling.

Fig. 6. An instance of simplified point clouds. A: real 3D object; B: scanning
point cloud; C: simplified point cloud (2,000 points).

where L p is the longest edge’s length of the bounding box
from P . Equation 5 is achieved based on previous practical
experience. It ensures that there are enough points in different
voxel boxes for parallel simplification. Besides, the parallel
simplification should not be processed in adjacent voxel boxes
at the same time. The reason is that such a situation produces
non-uniform density in the boundary. An instance is shown in
Figure 5. To avoid the situation, we set different rounds for
parallel simplification. In the same round, the voxel boxes used
for simplification have not adjacency to each other. During
the simplification, the method considers points have been
simplified in adjacent boxes to keep the uniform density in
the boundary. The simplification result can be regarded as
the simplified point cloud with certain point number, uniform
density, and accurate geometric consistency. An instance is
shown in Figure 6. The details of the implementation can be
found in [50].

Based on the simplified point cloud, we provide the second
part to achieve the representation in Ks. With same point
number and uniform density, the simplified point cloud can
be used as the input data in Equation 2. Then, we achieve the
point cloud representation in Ks. The influences of different
locations and scales are reduced. In Figure 7, two instances
of point cloud representation are shown. To achieve the final
correspondence result, we provide an alignment based on the
point cloud representation. The details are discussed in the
following part.

IV. ALIGNMENT

A. Global-Global Alignment

To achieve the registration result, an alignment process
should be provided to search the rotation O in Equation 3,
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Fig. 7. Instances of point cloud representation. Except for rotation, influence
of point density, translation and scaling is removed from the representation.

which is based on the point cloud representation. Once the
rotation is achieved, it can be regarded as the transformation
matrix for registration. In [19], an alignment method was pro-
vided, called Procrustes analysis. In Equation 6, the Procrustes
analysis is shown as

dK(K (a), K (b)) = arc cos(tr3),

Ks(a)Ks(b)t
= U3V, (6)

where the distance dK between K (a) and K (b) in K is
computed by their vector-based angle. The value of the
angle equals to the arc cosine of matrix trace tr3, 3 is
computed from the singular value decomposition (SVD) of
the Ks(a)Ks(b)t with a pair of unitary matrices U and V .
Essentially, the Procrustes analysis is a process to compute
SVD for KSS-based measurement. Using the SVD result, the
rotation can be reconstructed. It is represented as

Or = (U V )t , (7)

where Or is the rotation which can be regarded as the trans-
formation matrix. Unfortunately, it cannot be used in point
cloud registration directly. The reason is that the Procrustes
analysis requests the point cloud representation should be
ordered. In most cases, the requirement can not be satisfied.
To solve the problem, we propose a partitioned SO(3) search-
ing scheme to be a global-global alignment for registration.
It is similar to SO(3) searching by BnB scheme [31]. The
alignment energy is formulated as

Ed = H(Ks(a), O ◦ Ks(b)), (8)

where H is the Hausdorff distance, and other parameters have
been introduced in Equation 3. As a classical measurement,
the Hausdorff distance can be used to provide a quantita-
tive analysis for the shape similarity between two 3D point
clouds [51]. It does not require ordered point clouds as input
and can provide reasonable measurement in a global view.
To achieve the optimization result, we build a candidate set
{O} and this is achieved from the rotation with a certain angle
θ . Selecting the Oi with the minimum value of Ed to be the
initial rotation Oini t . The alignment process based on {O} is
shown as

Oini t = {Oi |minEd(Oi )}, Oi ∈ {O},

{O} = {(θ.x, θ.y, θ.z)|x, y, z ∈ [0, 2π/θ ]}, (9)

Fig. 8. An instance of alignment based on SO(3) searching in {O}.

where θ.x means to rotate around the X axis with θx degrees,
x is an integer, x ∈ [0, 2π/θ]. θ.y and θ.z share the similar
definition to θ.x . According to different rotations around the
axes of X , Y , and Z , we achieve the candidate set {O}. Then
the Oini t can be obtained. By default, θ = π/6 and the {O}

includes 1728(12×12×12) items. Based on the Oini t , we use
ICP to perform a precise alignment. Then our alignment with
a coarse-to-fine process is represented as

Or = T ◦ Oini t , (10)

where T is the transformation matrix computed by ICP.
Combining T and Oini t , the final rotation Or for registration
is computed, which can be regarded as the registration result.
In Figure 8, an instance of registration result is shown by our
alignment. It can be regarded as the 3D version of the instance
shown in Figure 4.

Based on the point cloud representation, the alignment
improves the convergence performance of ICP and achieves
more accurate registration result. However, it should be noticed
that the alignment is not a strictly global optimization for
SO(3) searching. The candidate set {O} just includes some
discrete rotations. Although it is effective for most cases in
practice, some error rotation results can not be avoided, espe-
cially for point clouds with symmetrical structures. To solve
the problem, we add an additional process if the Ed is
larger than a threshold Qthe (by default, Qthe = 0.001). The
additional process is to search other local optimal results. The
global optimal result is achieved from the local optimal set.
The additional process is formulated as

Ed(T ◦ Oini t ) > Qthe, Or = {O|min{Ed(T ◦ O j )}},

O j ∈ {Olocal}, (11)

where {Olocal} is the local optimal set, which is constructed
by the rotation O j . We define a searching kernel in {O} to
represent the range. O j belongs to {Olocal}, which is the local
optimal result with the minimum Ed in a searching kernel.
By default, the scale of kernel is 125 (5 × 5 × 5). Using ICP
on the local optimal set, the final rotation Or is achieved.
In Figure 9, we show the Ed changing in additional process.
The green points represent values of Ed from {Olocal}. The
yellow points are results processed by ICP on green points.
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Fig. 9. Energy curve changes of rotation searching by the additional process.
Vertical axis: Ed ; Horizontal axis: changing rotations by θ . The blue points
represent the rotation in {O}. The green points represent the local minimum
rotations from the local optimal set {Olocal }. The yellow points represent the
accuracy local minimum rotations by ICP.

Fig. 10. An instance of the additional process for rotation searching is shown.
First row: the preliminary registration results from the local minimum set,
which correspond to the green points in Figure 9; Second row: the accuracy
local minimum registration results by ICP, which correspond to the yellow
points in Figure 9.

The Or is achieved from the {Olocal} with minimum Ed .
In order to explain the process more intuitively, we show
an instance of local registration results and corresponding
accuracy results by ICP in Figure 10.

Combining the point cloud representation and alignment, the
KSS-ICP can be implemented for point clouds with complete
geometric structure. Some details of the implementation are
shown in Algorithm 1. It is robust to similarity transforma-
tions, including different locations, scales, and rotations. The
alignment with additional process does not require complex
optimization to achieve the best rotation. Without complex
point feature analysis and data training, It achieves accurate
registration results in practice.

B. Partial-Global Alignment

The global-global alignment can be used to align point
clouds with complete geometric structures. The center
extracted from the point cloud is stable and reliable, even the
input point cloud has non-uniform density. In our previous
work [52], the performance of the alignment with a rough
implementation has been verified. However, centers of point
clouds with incomplete geometric structures cannot be aligned.
Therefore, the performance of the alignment is reduced for
point clouds with incomplete geometric structures or defective
parts. Unfortunately, a large number of point clouds are
scanned from single view of the real 3D objects or scenes.

Algorithm 1 Implementation of KSS-ICP (Global-Global)

Fig. 11. Instances of point clouds with global geometric structures (blue)
and partial geometric structures (red). The arrows represent displacements
between centers of point clouds with global and partial geometric structures.

Incomplete geometric structures are produced in such cases.
In Figure 11, some instances are shown. To solve the problem,
we propose a partial-global alignment to be a refinement for
our alignment.

The basic idea of our partial-global alignment is to expand
searching regions in KSS with different potential centers. For
example, there have a pair of point clouds scanned from a 3D
object. One point cloud has some missing parts, and the other
one has the complete geometric structure. An unknowable
displacement exists between centers of the two point clouds.
The center displacements are shown in Figure 11. To solve
the problem, we build a searching region which includes a set
of candidate centers. In the region, we select a center from the
set to instead the original one in point cloud with incomplete
geometric structure. The new center has the optimal matching
result for registration. Then, the influence of the displacement
can be reduced. In Figure 12, we show some instances of
searching region and candidate center set.

We provide the details of implementation for partial-global
alignment. Let C be the set of candidate centers and ci is a
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Fig. 12. Instances of center searching regions in point clouds with incomplete
geometric structure. Blue points are selected in the searching region (grey box)
to construct candidate center set.

center in C . The alignment energy discussed in Equation 8 is
changed as

Ecd = H(Ks(a), O ◦ Ks(ci .b)), ci ∈ {C}, (12)

where a and b are two point clouds with complete and
incomplete geometric structures, ci .b means that the center of
b is replaced by ci . We set a square box to be the searching
region and sample different candidate centers according to
fixed step. In our practice, we construct a local coordinate
system to define the square box. The construction steps of
local coordinate system includes: 1. compute the current center
cr ; 2. search the point py with maximum distance to cr ,
obtain unit vector of pycr as local Y axis; 3. search the
point px which has minimum distance to cr and hasn’t linear
relationship with pycr , obtain vector px cr , and use unit vector
of px cr × pycr as local Z axis; 4. achieve local X axis by
Y × Z . Based on the local coordinate system, the candidate
centers can be collected:

{C} = {cr + (nx X, nyY, nz Z)}, (13)

where nx , ny and nz are movements based on local coordinate
system. With different values of nx , ny and nz , candidate
centers are generated into {C}. Values of nx , ny , and nz can
be specified by the user according to the certain application.
In our practice, we assume that the point cloud with an
incomplete geometric structure contains more than half of the
global geometric feature. We set a range for nx , ny and nz ,
nx = n ·rs/2, n = {−2,−1, 0, 1, 2}. ny and nz share the same
range. rs is the radius of the searching region, rs = |pycr |/4.
According to the sampling scheme, we achieve 125 (5×5×5)
candidate centers in {C}. It covers most cases of the center’s
movement for the point cloud with the incomplete geometric
structure produced by single-view scanning. Based on the C
and O , the initial partial-global alignment is provided as

(cini t , Oini t ) = {(ci , O j )|minEcd(ci , O j )},

ci ∈ {C}, O j ∈ {O}, (14)

where cini t is the new center with optimal matching result
for registration. Combining cini t and Oini t (Equation 9),
we obtain an initial registration result. Similar to the global-
global alignment, we use ICP and additional process to achieve
more accurate result based on initial registration. Then, the
final registration result can be achieved.

Algorithm 2 Alignment in a Computing Unit of GPU

Fig. 13. GPU-based parallel structure for alignment. {C} is the candidate
center set, {O} is the candidate rotation set.

C. Parallel Acceleration

The alignment can be regarded as an initial registration
before accurate registration by ICP. It is an exhaustive strategy
based on a controlled searching region (defined by {C} and
{O} in KSS). The quality of the alignment depends on the
range and density of {C} and {O}. Expanding the accuracy
of {C} and {O} can improve the performance of initial
registration. However, the time cost is huge even the initial
registration has been controlled in KSS. Fortunately, searching
initial registration result in {C} and {O} is a discrete matching
process without dependency. It can be accelerated by parallel
structure. In Figure 13, an instance is shown to explain
the alignment improved by the parallel structure, as further
described next.

We provide a GPU-based parallel acceleration to improve
the efficiency of alignment. Each computing unit of GPU
corresponds to a rotation Oi of global-global alignment or a
pair of parameters (ci , O j ) of partial-global alignment. In GPU
memory, the stored data just include point clouds which have
been simplified, the candidate center set {C}, and the rotation
set {O}. The time cost of data transfer from host memory to
GPU memory can be ignored. In Algorithm 2, we show the
program of alignment in a computing unit. In most cases, the
number of C × O (125 × 1728) is smaller than the sum of
threads of a GPU with mainstream performance. It means that
the initial alignment can be finished in one computation cycle
of the parallel structure, which ensures the performance of our
method. In experiment, we will show the improvement of the
KSS-ICP on various datasets.

V. EXPERIMENTS

We implement the KSS-ICP on a machine equipped with
Intel Xeon W2133 3.6GHz, 32GB RAM, Quadro P620, and
with Windows 10 as its running system and Visual Studio 2019
(64 bit) as the development platform. The experimental point
cloud models were selected from ModelNet40 [53], RGB-D
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Fig. 14. Comparisons of different registration results in ModelNet40 models.

Fig. 15. Comparisons of different registration results in RGB-D Scenes.

TABLE I
EVALUATIONS FOR DIFFERENT REGISTRATION METHODS

IN MODELNET40

TABLE II
EVALUATIONS FOR DIFFERENT REGISTRATION METHODS

IN RGB-D SCENES DATASET

Scenes [54], and SHREC [55] datasets. The test dataset from
ModelNet40 contains 1235 models (since there are many
similar models, we select models with 10% sampling rate from
each category); the test dataset from RGB-D scenes contains
all scene models (14); the test dataset from SHREC contains
all models (1200 models from 50 categories). Firstly, we eval-
uate the robustness of different methods for point clouds with
different similarity transformations. Secondly, we compare the
performance of different registration methods for point clouds
with different density. Next, we test the robustness of different

Fig. 16. Instances of two kinds of noisy point clouds with different
noisy ranges. G and M represent Gaussian and non-zero mean noise; the
floating-point numbers represent noisy ranges.

methods for noisy and defective point clouds. Finally, we show
a comprehensive analysis of KSS-ICP, including time cost
report and some limitations in practice.

A. Robustness for Similarity Transformations

It has been discussed that the similarity transformations
affect the registration process, especially for different scales
and rotations. In this part, we add some similarity transforma-
tions with random parameters (scaling∈ [0.8, 1.2], rotation>

30◦ around each axis) into ModelNet40 to construct a source
point cloud dataset. Original dataset is used to be the target
point cloud dataset. Based on the two datasets, we evaluate
the performance of different registration methods, includ-
ing ICP [14], FPFH [40], Go-ICP [31], PonitNetLK [17],
PCRNet [18], Fast-ICP [23], and KSS-ICP. The ICP and
FPFH are implemented by the PCL library. The codes
of Go-ICP, PonitNetLK, PCRNet, and Fast-ICP are pro-
vided by Github (Go-ICP: yangjiaolong/Go-ICP; PonitNetLK:
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TABLE III
EVALUATIONS FOR DIFFERENT REGISTRATION METHODS IN SHREC

DATASET WITH GAUSSIAN NOISE. NOISY RANGES
INCLUDE 0.33 AND 0.66

vinits5/PointNetLK; PCRNet: vinits5/pcrnet_pytorch; Fast-
ICP: yaoyx689/Fast-Robust-ICP). In Figure 14, some regis-
tration results by different methods are shown. In Tables I,
we compare registration evaluation results by different meth-
ods. MSE is the average value of mean squared errors. RMSE
is the average value of root mean squared errors. MAE is the
average value of mean absolute errors. Euclidean distances
of points are computed to generate values of MSE, RMSE,
and MAE. Angular measurements of point normal vectors are
measured to produce MSE(R), RMSE(R), and MAE(R). The
results show that the KSS-ICP achieves more accurate results
for point clouds with random similarity transformations.

B. Robustness for Different Densities

Different densities of point clouds affect the distance-based
metric in the registration process. Therefore the robustness
of different densities is important for registration methods.
We use a point cloud resample method [56] to change point
densities in the RGB-D scenes dataset to construct a source
point cloud dataset. Random similarity transformations are
also added to the source point cloud dataset with the same
parameters introduced in the previous subsection. The original
dataset is used to be the target point cloud dataset. Based
on the two datasets, we evaluate the density robustness for
different registration methods. In Figure 15, some registration
results are shown by different registration methods. Similar
to Tables I, we compare the quantitative results in Tables II.
Benefited from the point cloud representation, KSS-ICP also
achieves better robustness for point clouds with different
densities.

C. Robustness for Noisy and Defective Point Clouds

As mentioned before, noise and defective parts in point
clouds can not be avoided in wild scanning. The robustness
for noisy and defective point clouds should be measured for
registration methods. We build five test sets from SHREC
to evaluate the robustness. Two kinds of noise are added to
SHREC models to generate four test sets with different noisy

TABLE IV
EVALUATIONS FOR DIFFERENT REGISTRATION METHODS IN SHREC

DATASET WITH NON-ZERO MEAN NOISE. NOISY
RANGES INCLUDE 0.5 AND 1.0

TABLE V
EVALUATIONS FOR DIFFERENT REGISTRATION METHODS IN

SHREC PARTIAL DATASET

ranges. One kind of noise is Gaussian noise generated by

p′

i = pi + ni · mi ,

mi ∈ {m}, {m} ∼ N (0, σ 2), σ = r ∗ lk, (15)

where p′

i is the generated noise that is computed from the
original point pi with a random movement mi according to
the normal vector ni . The values of {m} satisfy the normal
distribution. The σ is the distributed control parameter that
is computed by the input noisy range r and lk (lk is the
average length between points and their k neighbors, k = 12 be
default). The range r controls the value of σ that reflects the
degree of the noise. The other kind of noise is non-zero mean
noise. We just change the normal distribution to uniform one
based on Equation 15 to generate the noise, {m} ∼ U (0, σ 2).
In Figure 16, some instances of noisy point clouds are shown.
In Figure 17, some registration results achieved from the
test sets are shown. In Tables III and IV, we compare the
quantitative results from different methods based on two kinds
of noise. Based on the visualization and quantitative analysis,
our method achieves more accurate results. In Figure 19
(two sub-pictures on the left), curves of MSE values from
registration results with different kinds of noise are shown.
The curves reflect the noisy sensitivity of different registration
methods. It is clear that our method has better performance of
noisy robustness.

For evaluation of defective parts robustness, the artificial
deletions are processed into SHREC to generate the fifth test
set. Based on the set, we compare the registration results from
different methods. In Figure 18, two instances are shown.
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Fig. 17. Comparisons of different registration results in SHREC models with Gaussian and non-zero mean noise with different ranges (first row: Gaussian
noise with noisy range 0.33; second row: Gaussian noise with noisy range 0.66; third row: non-zero mean noise with noisy range 0.5; fourth row: non-zero
mean noise with noisy range 1.0).

Fig. 18. Comparisons of different registration results in SHREC models with defective parts.

In Table V, the quantitative results of different method are
compared. Based on the test results, it can be proved that
the KSS-ICP achieves better robustness to noisy and defective
point clouds.

D. Further Analysis

Based on the experimental data, a comprehensive analysis
is shown in this part. The complexity of ICP is O(N 2)

which is higher in registration tasks. The FPFH improves the
complexity to the O(Nk), k is the specified neighbor number.
However, the time cost of the FPFH is larger than ICP for the
same point clouds. The reason is that the computation cost

of FPFH feature extraction is huge. The PointNetLK achieves
improvement for registration with O(N ) complexity. In fact,
the point number N in PointNetLK is controlled by the net-
work structure. The computation cost is produced by the pre-
processing, which is the same as the PCRNet. For Go-ICP and
Fast-ICP, the complexities are improved to approach O(N ).
However, the convergence performance of the two methods is
not stable, especially for point clouds with different scales.
The complexity of KSS-ICP is O(N |C ||O|), |C | and |O|

represent the numbers of elements in {C} and {O} discussed in
Equation 14. With the parallel acceleration, O(N |C ||O|) can
be approximately improved to O(N ). In Figure 19 (the third
sub-picture), time cost curves of different registration methods
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Fig. 19. MSE (Euclidean distance) and time cost curves generated by different methods in SHREC dataset. First chart: MSE curves for point clouds with
Gaussian noise; second chart: MSE curves for point clouds with non-zero mean noise; third chart: time cost report.

TABLE VI
TIME COST REPORTS OF POINT CLOUDS WITH DIFFERENT SCALES

(K: 1000 POINTS) FOR DIFFERENT METHODS. SOME RESULTS THAT
THE TIME COST IS MORE THAN 300 SECOND ARE IGNORED.

KSS-ICP(P): KSS-ICP WITH PARALLEL ACCELERATION

are shown. KSS-ICP(P) means the KSS-ICP with GPU-based
parallel acceleration. Based on the curves, it can be seen that
the deep learning-based methods are faster.

For the performance of MSE-based evaluation, the deep
learning-based methods do not achieve accurate MSE values
in test datasets, especially for the point clouds with different
scales and large rotations. The influence of similarity transfor-
mation is not reduced during the encoding of the methods.
It takes some unstable factors for registration. The FPFH
achieves accuracy registration results in different conditions.
Although it cannot reduce the influence of different scales,
the rotation alignment is correct in most cases. However,
the performance of the FPFH is affected by the noise and
defective parts. The limitations of Go-ICP are sensitive to
noisy and defective point clouds, and its convergence speed
is slow for point clouds with different scales. For point
clouds with large number (>500k), the performance of most
methods is decreased. There have two reasons: the time cost
of pre-processing is increased; the convergence speed of the
optimization process is changed to slow. In Table VI, we show
the time cost reports for different methods in point clouds with
large number ranges([5k −1, 000k]). Benefited from the point
cloud representation in and the proposed alignment, KSS-ICP
can register point clouds with large number efficiently. With
the parallel acceleration, it can be further improved.

Although the KSS-ICP has many advantages for various
registration tasks, there are some limitations still exist in prac-
tice. Firstly, our method searches the potential alignment in a

Fig. 20. Some instances of partial-partial registration by our method.
Bounded by grey dotted line, left: positive instances; right: negative instances.

global view which increases the computation. As mentioned
before, the time cost of KSS-ICP is not faster than deep
learning frameworks in some cases where the point cloud
number is smaller than 100k. The performance depends on the
parallel acceleration that is limited by the hardware. Secondly,
the function of KSS-ICP for partial-global is restricted. KSS-
ICP is sensitive to point clouds with an incomplete geometric
structure that smaller than half of the global one. In Figure 20,
some instances are used to illustrate the limitation. The per-
formance of the method is reduced when the global structure
is broken. The reduction produces error registration results
like negative instances in Figure 20. The reason is that the
alignment of the KSS-ICP is implemented based on the global
shape matching. Fortunately, when the missing parts are not
affecting the representation of global shape feature (the centers
can be aligned by our exhaustive searching strategy), our
method still works well. Some positive instances are shown in
Figure 20 at the same time. Considering the balance between
the efficiency and feasibility, our method can still be regarded
as a reasonable and practical solution for registration.

VI. CONCLUSION

We have proposed a point cloud registration method, KSS-
ICP, based on Kendall shape space (KSS) theory, as a feasible
solution to avoid the difficulty in registration. The point cloud
representation in KSS reduces influences of different point
densities, locations, and scales. Combining the alignment with
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parallel acceleration and the ICP method, KSS-ICP achieves
registration results for point clouds with acceptable complex-
ity. It does not require complex geometric feature analysis and
optimization. With a concise implementation, KSS-ICP avoids
the local optimum as much as possible while improving the
noise robustness. Benefited from the parallel acceleration, the
performance is not reduced when the search range is expanded
in KSS. A large number of computation units of GPU search
candidate results at the same time without additional time
cost. It also supports partial-global registration for point clouds
with defective parts. Experiments show that the KSS-ICP has
good performance for registration with different conditions.
Compared to the traditional methods, it achieves a better
balance between accuracy and efficiency.

In future work, we consider combining the KSS-based mea-
surement and point cloud-based deep network to implement
registration. We expect to design a local shape alignment based
on the deep encoding method to remove the limitation in the
partial-global registration task.
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