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Abstract—With rapid development of 3D scanning technology, 3D point cloud based research and applications are becomingmore

popular. However, major difficulties are still exist which affect the performance of point cloud utilization. Such difficulties include lack of local

adjacency information, non-uniform point density, and control of point numbers. In this paper, we propose a two-step intrinsic and isotropic

(I&I) resampling framework to address the challenge of these threemajor difficulties. The efficient intrinsic control provides geodesic

measurement for a point cloud to improve local region detection and avoids redundant geodesic calculation. Then the geometrically-

optimized resampling uses a geometric update process to optimize a point cloud into an isotropic or adaptively-isotropic one. The point cloud

density can be adjusted to global uniform (isotropic) or local uniformwith geometric feature keeping (being adaptively isotropic). The point

cloud number can be controlled based on application requirement or user-specification. Experiments show that our point cloud resampling

framework achieves outstanding performance in different applications: point cloud simplification,mesh reconstruction and shape

registration.We provide the implementation codes of our resamplingmethod at https://github.com/vvvwo/II-resampling.

Index Terms—Isotropic resampling, intrinsic resampling, point cloud simplification, mesh reconstruction, shape registration

Ç

1 INTRODUCTION

WITH the rapid development of 3D scanning technol-
ogy [1], [2], 3D point clouds are becoming more popu-

lar and widely used in different applications such as indoor
modeling [3], [4], geographic remote sensing [5], autopi-
lot [6], localization [7], [8], face recognition [9], etc. Com-
pared to traditional image data, 3D point clouds contains
complete geometric information, which improve the perfor-
mance of computer vision applications [10], [11]. The real
world acquisition of point clouds is expected to provide a
bridge of computer vision and computer graphics which
were two largely separated fields in the past.

Although there are many advantages of 3D point clouds,
some difficulties still exist and restrict wide utilization of
point cloud data. The difficulties include: 1.lack of local
adjacency information; 2. non-uniform point density; 3. con-
trol of point numbers. These difficulties are explained as fol-
lows. First, the adjacency between points is unknown in a
point cloud. Without information on adjacency, local
regions of a point cloud are unknown and almost all contin-
uous surface-based applications are not effective [12], [13].
Second, using 3D scanning devices with lower resolution in
wild scene will inevitably produce non-uniform density
regions which reduce the performance in point cloud-based

applications. Finally, different point numbers of point
clouds cannot be controlled during the scanning. In some
cases, point clouds with large volume of redundant points
increases the storage and calculation cost. In other cases,
point clouds with insufficient points cannot support the
accurate geometric feature analysis. For some applications,
point clouds should be uniformed into same point number
for feature training such as point cloud registration [14],
[15] and deep feature learning framework [16], [17]. There-
fore, the point cloud number should be controlled. To solve
the difficulties above, point cloud resampling is used.

The point cloud resampling is to achieve a regular alter-
native from the raw point cloud. It aims to maintain geomet-
ric consistency with the raw point cloud and has uniform
density with certain point number. According to the mov-
ing least squares (MLS) surface theory [18], a continuous
MLS surface can be defined based on local regions of a point
cloud. In order to obtain the geometric consistency in
resampling result, the local region of each point should be
detected while the MLS surface from resampling result
should fit the raw point cloud. Some resampling meth-
ods [19], [20] introduce the local region detection and uni-
form density adjusting in tangent space. However, most of
them do not provide intrinsic control, which means that dis-
tances between points may be off the MLS surface. It leads
unpredictable errors for local region detection in resam-
pling, especially for areas with sharp curvature changes.
Moening provided a solution [21] for intrinsic resampling
which is feasible in theory. However, the computation cost
is huge for geodesic path searching in a point cloud. To the
best of our knowledge, there is no resampling solution to
solve all difficulties at the same time.

In this paper, we propose an I&I resampling framework
to address the three aforementioned difficulties. As shown
in Fig. 1, it is a two-step framework that includes efficient
intrinsic control and geometrically-optimized resampling.
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First, efficient intrinsic control is used to provide geodesic
measurement for a point cloud. Fundamentally, it inherits
the advantages of traditional intrinsic control by geodesic
path searching and improves its efficiency. Second, the
geometrically-optimized resampling is to adjust a raw
point cloud with non-uniform density into an isotropic or
adaptively-isotropic one. It solves the problems of tradi-
tional isotropic resampling methods with a geometric
update process. The resampling also provides adaptively-
isotropic resampling which balances the isotropic resam-
pling and geometric feature keeping. Some geometric
features like curvature sensitive (point density is propor-
tional to curvature) and sharp edges can be kept in the
resampling result. Using the I&I resampling framework, a
raw point cloud can be denoised and simplified into an
resampling result with accurate local regions, isotropic
property and the point number specified by users or appli-
cations [15], [16]. The contributions of this paper can be
summarized as:

� An efficient intrinsic control scheme is proposed to
provide the geodesic measurement for a point cloud.
The intrinsic control is based on the proposed geode-
sic coordinate system which inherits advantages of
traditional methods and avoids redundant geodesic
distance calculation. Benefited from the improve-
ment of efficiency, our intrinsic control makes the
intrinsic resampling more practical.

� A geometrically-optimized resampling method is
designed. Following a geometric update process, a
point cloud can be optimized into an isotropic or
adaptively-isotropic one. It does not require complex
optimization for density adjusting and avoids the
local optimum resampling. The convergence speed
of the method is fast. For geometric feature keeping,
the adaptively-isotropic resampling is provided as
an addition, which achieves a balance between geo-
metric consistency and isotropic property with a cer-
tain point number. The quality of raw point clouds
can be greatly improved.

� Applications of our I&I resampling framework are
demonstrated, including point cloud simplification,
mesh reconstruction and shape registration.
Benefited from the I&I resampling, such applications
achieve significant improvement in performance
without complex feature analysis or optimization.

The rest of the paper is organized as follows. In Section 2,
we introduce some classical works for point cloud resam-
pling. In Section 3, we describe the implementation of effi-
cient intrinsic control with point cloud pre-processing. The
geometrically-optimized resampling and related applica-
tions are introduced in Sections 4 and 5. We demonstrate
the effectiveness and efficiency of our method with exten-
sive experimental evidence in Section 6, while Section 7 con-
cludes the paper.

2 RELATED WORKS

There are many methods in the literature for point cloud
resampling, which can be classified into four groups: grid
based resampling, feature clustering based resampling,
intrinsic resampling and distance field optimization based
resampling.

Grid based resampling methods utilize grid structure or
similar spatial organization to simplify a point cloud, such
as grid structure [22], Poisson disk sampling [23], [24],
octree [25], and kd-tree [26]. The advantages of such meth-
ods are that they are simple to implement, lower computa-
tion cost and have the potential to achieve rough uniform
density by radius controlling of grids. Benefited from the
efficiency of such methods, some related applications can
be implemented with high practicality, including Screened
Poisson-based mesh reconstruction [27], Grid-based simpli-
fication [22], and point cloud normalization for deep learn-
ing frameworks [28], [29]. However, the drawbacks are also
significant. First, they are likely to lose important geometric
features of the raw point cloud such as sharp edges and cur-
vature sensitive. Second, without local region detection,
they would be unable to achieve isotropic resampling. Fur-
thermore, without intrinsic control, they may violate the

Fig. 1. The pipeline of the proposed point cloud resampling method.
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geometric consistency. In most cases, such methods are
used to obtain an initial resampling result but not final one.

Geometric feature based clustering methods attempt to keep
the geometric consistency of resampling. The adjacent
points with similar geometric features are clustered into a
group and one center point is selected to represent the
points from the group. These methods differ from the selec-
tion of geometric features such as curvature [30], [31], nor-
mal vector [32] and locally optimal projection (LOP)
operator [33]. They keep the geometric consistency by geo-
metric feature based clustering. Such frameworks are used
to improve the performance for some applications, includ-
ing registration [34], [35] and simplification [31]. However,
their performance is limited by the clustering method. With-
out intrinsic control, resampling errors appear in the areas
with sharp curvature changes, which is similar to the grid
based resampling methods.

Intrinsic Resampling methods are proposed to add intrin-
sic control in resampling. These methods measure distances
of points on the MLS surface by geodesic path. The geodesic
path represents real distance between two points and
improves the accuracy of local region detection. It has been
discussed that Moening provided intrinsic resampling in
previous work [21]. He used the geodesic distance from
Fast Marching method to achieve an intrinsic resampling
result from an input point cloud. Similar to [21], some meth-
ods attempt to use geodesic distance to instead euclidean
distance such as geodesic based Poisson disk resam-
pling [36] and Geodesic Voronoi Diagrams [37], [38]. How-
ever the methods achieve the intrinsic control in resampling
at the expense of high computational efficiency, which lim-
its their practical application.

Distance field optimization based resampling methods can be
regarded as the mainstream solutions for resampling task,
which include Laplace graph optimization [39], [40], Centroi-
dal Voronoi Tessellation [19], [41], [42], and particle-based
resampling [20], [43], [44]. Such methods optimize a distance
field of a point cloud. The distance field is constructed by dis-
tances between all points and their neighbors. Once the dis-
tance field is optimized which means that distances between
points and their neighbors are almost equal, the isotropic
resampling is finished. Using the resampling, the local region
can be detected in local tangent space and the point density
can be adjusted to be isotropic. Such methods have been
applied in mesh reconstruction [19], [45]. However, the
resampling in local tangent space cannot be regarded as an
intrinsic resampling and the resampling errors cannot be
avoided in the areas with sharp curvature changes. Another
serious problem is that they are likely to trap in the local opti-
mum, especially for the optimization without accurate detec-
tion of point neighbors. In summary, such methods cannot
satisfy all requirements of resampling asmentioned before.

Our resampling method is proposed to achieve intrinsic
and isotropic resampling at the same time. With the efficient
intrinsic control, the computation cost of geodesic measure-
ment is reduced while improving the accuracy of local
region detection. To avoid local optimum production, we
introduce a geometrically-optimized resampling that is
inspired by isotropic remeshing. Benefited from the two-
step framework, our resampling is more robust and with
faster convergence speed.

3 EFFICIENT INTRINSIC CONTROL

As aforementioned, intrinsic control is important for resam-
pling. The difficulty of the intrinsic control algorithm’s
design is how to balance the efficiency and accuracy of geo-
desic distance computation. In this section, we introduce
the efficient intrinsic control scheme that provides the geo-
desic measurement for a point cloud in an efficient way.
Using three geodesic distance fields to transfer a point cloud
into the geodesic coordinate system, distances between
points are under the intrinsic control without redundant
geodesic calculation like [21].

3.1 Pre-Processing

Before constructing the efficient intrinsic control, a point
cloud pre-processing is needed. The influence of noisy
points should be reduced and some areas with non-uni-
form density should be adjusted. Such situations affect
the accuracy of the geodesic coordinate system. For
denoising, we use a MLS projection operator to smooth
the point cloud [46]. The MLS (moving least squares) sur-
face is used to define a continuous surface from discrete
points. The noisy points are mapped onto the MLS surface
based on the MLS surface fitting error which is computed
by [46]

pi � p0i ¼ aðniÞT ðaðpiÞ � piÞaðniÞ; (1)

aðpiÞ ¼
Xk
j¼1

uð pi � pj
�� ���� ��ÞpjPk

j¼1 uð pi � pj
�� ���� ��Þ ; (2)

where pi is a point of a point cloud P , p0i is the new position
of pi after mapping onto the MLS surface of P . The mapping
can be regarded as a ”pulling back” process from pi to p0i. A
set of neighbor points fpjg of pi is used for computation of
p0i. The weighted average function aðpiÞ also can be used to
compute weighted average normal aðniÞ. For selection of
weighted function u, we use a Gaussian function which is
suggested in [47], represented as

uðdÞ ¼ e
�d2

h2 ; (3)

where h represents searching radius in the local region of a
point, which is equal to the largest distance of all points in a
point cloud to their kth neighbor (the neighbor point num-
ber is set to 8 by default). The d represents the point
distance.

During the iterative update for each point by Equa-
tion (1), noisy points are smoothed by its neighbors. In most
cases, it achieves better denoising performance than classi-
cal methods such as bilateral filter [48] and Gaussian fil-
ter [49](results are shown in experiment). A special
situation should be processed independently that is to out-
lier in a point cloud. For k-neighbor searching in a point
cloud, the kd-tree is used to increase the neighbor searching
speed. However, there is no guarantee that using kd-tree
can achieve correct neighbor points for an outlier. An
instance is shown in Fig. 2. To avoid such error, we add an
outlier checking program that is represented as

Poutlier ¼ f pojpj 2 KðpoÞ; po 62 KðpjÞg; (4)
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where K means the k-neighbor searching set of the point
(jKj ¼ 8 by default). Once a neighbor point pj of po satisfies
Equation (4), then po is judged as an outlier. The method
checks each point in the neighbor set KðpoÞ of po according
to Equation (4). Even there have some points of KðpoÞ are
outliers, the result is not changed. In Fig. 3, we show a
denoising instance. If a point is an outlier, the neighborhood
relations between the point and its k-neighbor points are not
dual. To “pull back” the outlier onto the MLS surface, the
new weighted average function is provided as

aðpoÞ ¼
Xk
jn¼1

uð po � pjn
�� ���� ��ÞpjnPk

j¼1 uð po � pjn
�� ���� ��Þ ; (5)

where po is a outlier that belongs to Poutlier. Compared to
Equation (2), the difference is that the neighbor point set
fpjng is selected based on pn but not the po itself. pn is the
nearest point of po and pn 62 Poutlier; pjn 62 Poutlier. Using the
new ”pulling back” function for Poutlier, the neighbor search-
ing error of outlier can be avoided.

Another target of the pre-processing is adjusting areas
with non-uniform density in a point cloud. It improves the
accuracy of the geodesic coordinate system and the compu-
tational efficiency in following steps. We use an octree sam-
pling to be the adjustment. The radius of octree is the global
average distance between each point to its k-neighbor points
(k = 3 by default). We leave one point from each voxel box of
octree, which is closest to the center. The octree sampling
can be exploited as an effective initialization for density
adjustment. In Fig. 4, we show an instance.

3.2 Intrinsic Control Scheme

After pre-processing, we introduce the details of efficient
intrinsic control. It is processed in the geodesic coordinate
system inspired by [50]. In the geodesic coordinate system,
distances between points reflect geodesic distance and
avoid the redundant geodesic path computation. A concise
and efficient method for the system construction is comput-
ing three geodesic distance fields to achieve a three-satellite
positioning. A point can be relocated by three distances
between itself and the three satellites. For a point cloud, if
we detect three points as three satellites and compute corre-
sponding geodesic distance fields, an intrinsic location is
achieved, which can be regarded as the point cloud repre-
sentation in the geodesic coordinate system. According to

the wave propagate property [51], [52], adjacency points
should be close in different geodesic distance fields. It
means that a local region detection or adjacency points judg-
ment should be satisfied in euclidean space and geodesic
coordinate system at the same time. If the adjacency
between two points is judged as correct in euclidean space
but not in geodesic coordinate system, then the points are
not adjacency. It is an efficient implementation of intrinsic
control.

To achieve the geodesic coordinate system, two core
issues are geodesic distance computation in a point cloud
and satellite detection. For geodesic distance computation,
the fast marching [51] can be used in point clouds with the
balance of efficiency and accuracy. Compared to heat
flow [53], it does not require to analysis cotangent weights
in the local region of a point. To implement the fast march-
ing in point cloud, the neighbor structure should be defined
at first. We construct the kd-tree [54] for the point cloud and
use k-nearest neighbor searching [55] to search point neigh-
bors, which can be used to define the neighbor structure
and drive the fast marching to compute the geodesic dis-
tance iteratively.

Based on the fast marching method, we propose the sat-
ellite detection. Theoretically, we can randomly select three
points without linear relationships to be satellites. In our
framework, we detect different satellites as far as possible.
The reason is that if satellites are detected in a small region,
geodesic distances of points are more close. It reduces effect

Fig. 2. An instance of neighbor searching error of outlier. The red point is
the outlier, blue points represent neighbor points of the outlier by k-near-
est searching. It is clear that the blue points can not be used to represent
a continuous local region and the outlier can not be mapped on the MLS
surface.

Fig. 3. An instance of denoising result. The red point cloud is the input
point cloud with noise; the green point cloud is the denoising result.

Fig. 4. An instance of density adjustment. The red point cloud is the input
point cloud with non-uniform density. The green point cloud is processed
by octree with uniform density.
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of intrinsic control from the geodesic coordinate system. We
use farthest point sampling with geodesic distance [21] to
detect satellites: 1. select a point randomly as the initial
point; 2. use farthest point sampling to detect other three
points (p1; p2; p3) by geodesic distance, and achieve three
geodesic distance field (g1; g2; g3); 3. a point pi is mapped
into the geodesic coordinate system based on three fields
g1ðpiÞ, g2ðpiÞ, and g3ðpiÞ. In Fig. 5, we show an instance of
the geodesic coordinate system construction. In the geodesic
coordinate system, the efficient intrinsic control is imple-
mented. It improves the accuracy of the local region detec-
tion. In Fig. 6, we show an instance of the improvement.

In most cases, the point cloud has one-to-one relationship
to its representation in the geodesic coordinate system.
However, there has a special case, that is when the three sat-
ellites are distributed in one geodesic path, the one-to-one
relationship is broken. Such case will inevitably happen in
some point clouds such as sphere models. Using satellite
detection to fix two poles, the third point must be located in
the geodesic path (spherical warp) between the poles. If two
points are mirror images of each other and the mirror plane
is constructed by the three satellites, the two points have
same coordinates in the geodesic coordinate system but not
the same euclidean coordinate to share a same neighbor
region. Then, the geodesic neighbors of one point are
detected as the neighbors of its mirror point at the same
time, and this produces wrong geodesic neighbors in the
geodesic coordinate system. Therefore, for such a point, we
can use the euclidean adjacency to detect the wrong geode-
sic neighbors produced by mirror points, so that accurate
geodesic neighbor detection can be implemented even for
this special case. It can be regarded as the euclidean search-
ing to avoid the mirror points in neighbor detection. In
Fig. 7, some representations in the geodesic coordinate sys-
tem are exhibited from different point cloud models, includ-
ing sphere and multi-objects models.

4 GEOMETRICALLY-OPTIMIZED RESAMPLING

Based on the efficient intrinsic control, we propose a geo-
metrically-optimized resampling method, which includes
an isotropic resampling and an adaptively-isotropic

resampling. The core issue for isotropic resampling is to
optimize the distance field of a point cloud with geometric
consistency and certain point number. Combining the effi-
cient intrinsic control, the geometrically-optimized resam-
pling is convenient to implement, quick converges and
avoids trapping in local optimum. For geometric feature
keeping, the adaptively-isotropic resampling is proposed as
an additional selection. It achieves a better balance between
isotropic property and geometric feature keeping. In follow-
ing parts, we will discuss the implementation details.

4.1 Isotropic Resampling

According to the aforementioned core issue of isotropic
resampling, a mathematical model can be used to represent
the isotropic resampling energy as

EI ¼
Xn
i¼1

jjdðpi; pjÞ � ljj; pj 2 rðpiÞ; M 2 rðP Þ; (6)

where EI represents the isotropic resampling energy, r is
the 1-ring local region which is defined by Voronoi Diagram
on the MLS surface M and constructed from the neighbor
structure. The neighbor structure union set rðP Þ of point
cloud P should cover the M. The average edge length l is
computed from the mean value of the distances from pi to
its neighbor set fpjg. The n is the certain point number in
resampling result. For each point, the neighbor structure
has been improved by the efficient intrinsic control.

An isotropic remeshing [56] is proposed to optimize the
Equation (6) based on meshes. It can be regarded as a pure

Fig. 5. An instance of the geodesic coordinate system construction.
Three pictures in first row represents the satellite detection. Two pictures
in second row represents the mapping from a point cloud in euclidean
space into the geodesic coordinate system.

Fig. 6. An instance of local region detection with efficient intrinsic control.
The geodesic coordinate system from a 2D curve can be regarded as a
1D distance field. It provides the efficient intrinsic control to detect the
neighbor points (blue points) for the red point. It is clear that the efficient
intrinsic control is useful for accurate neighbor points judgment.

Fig. 7. Some instances of point cloud representation in the geodesic
coordinate system. The color maps represent geodesic distance fields
constructed by satellites (red).
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geometric update process. However, such parts are
designed for meshes but not point clouds which means the
isotropic remeshing can not be used for isotropic resam-
pling directly. To solve the problem, we redesign basic steps
of isotropic remeshing to fit point clouds. Based on the effi-
cient intrinsic control, a more accurate local region detection
can be achieved for each point. Combining all local regions
from a point cloud, a half-edge structure is achieved. Based
on the structure, the aforementioned four components can
be used with a simple modification. Details of our isotropic
resampling include the following steps:

1) Constructing two kd-trees for the point cloud in
euclidean and the geodesic coordinate system,
respectively.

2) Searching k neighbors for each point from two kd-
trees (k ¼ 8 by default). The neighbor should satisfy
the k-nearest searching for two kd-trees at the same
time. Mapping the k neighbors in the tangent space
and constructing Delaunay triangulation for each
point. A half-edge structure is achieved from the
Delaunay triangulation with the intrinsic control.

3) Detecting the average edge length l. If l is not empty,
then skip this step; otherwise, compute the average
edge length from the half-edge structure to l.

4) Running the 3 components (split, collapse, and tan-
gent movement) for the half-edge structure itera-
tively (assume ei represents an edge of two adjacent
points, running split when jeij > 1:6 l and collapse
when jeij < 0.8 l).

5) If the point number is larger or smaller than certain
point number from application requirement or user-
specified, then increase or decrease the l and loop to
step 3.

The main process of resampling is concentrated in Step 4.
In Fig. 8, we show an instance of the step with intermediate
outputs. To achieve the isotropic resampling with a certain
number, we change the l in each step. The resampling point
number is controlled into the certain number. Once the error
between two numbers is close enough, we stop to change
the l and adjust the number of split and collapse (one split
add a point and one collapse minus a point) in Step 4 to
achieve final resampling result. Then the point number in
resampling result can be controlled.

4.2 Adaptively-Isotropic Resampling

An isotropic resampling is a strictly isotropic point cloudwith
global uniform density, the distances between each point and

its neighbors are almost equal. However, it causes the loss of
geometric features to a certain degree. The curvature sensitive
is lost. For a fully functional resampling, it should provide an
adaptively-isotropic resampling to balance the isotropic prop-
erty and geometric feature keeping. The mathematical model
of adaptively-isotropic resampling is represented as

EH ¼
Xn
i¼1

jjdhðpi; pjÞ � lhðpiÞjj; (7)

where dh is the adaptive distance, dhðpi; pjÞ ¼ ðhðpijÞ �
dðpi; pjÞ, h is used to decided the scheme for adaptive dis-
tance, which can be regarded as the density function, hðpijÞ ¼
ðhðpiÞ þ hðpjÞÞ=2, lh is the adaptive length defined by h. Com-
pared to the Equation (6), the adaptively-isotropic resampling
changes the distance d to adaptive distance dh, which means
that distances in different regions are not same. Comparing to
average edge length l, values of lh in different regions are not
same. It can be used to adjust the density in different regions.
Then some important geometric features such as curvature
sensitive and sharp edges can be kept. A resolution has been
provided in the adaptively-isotropic remeshing [57]. The
basic idea is to change the average length l in different areas
to fit h. However, the isotropic property is broken in the area
with sharp changes of h value. In Fig. 9, we show an instance
to introduce the drawback of adaptively-isotropic remeshing.

To achieve the balance, we provide a weighed function
field for h. The weighed function field is used to smooth the
sharp changes of dh. The values of dh are updated to fit con-
tinuous transformation in adaptively-isotropic resampling.
The weighted function is represented as

h0ðpiÞ ¼ a
Xk
j¼1

dðpi; pjÞhðpjÞPk
j¼1 dðpi; pjÞ

þ bhðpiÞ; (8)

where h0ðpiÞ is the newvalue of hðpiÞwhich has been smoothed
by hðpjÞ fromneighbors, a and b are updateweights, a ¼ 1� b

(b ¼ 0:5 by default). The equation is similar to Equation (1). For
curvature sensitive keeping, h represents the curvature of a
point cloud. We use the average normal angle between a point
and its neighbors to represent the curvature sensitive value.
The curvature sensitive function is shown as

hcðpiÞ ¼
1

k

Xk
j¼1

cos �1 NðpiÞ �NðpjÞ
� �

; (9)

Fig. 9. Comparing the resampling results from the adaptively-isotropic
remeshing and our adaptively-isotropic resampling. It is clear that the
resampling result of adaptively-isotropic remeshing is discontinuous with
abnormal distribution.

Fig. 8. An instance of isotropic resampling with intermediate outputs.
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where hc is the curvature, N is the unit normal vector. Tak-
ing hc into the Equation (8), we achieve the weighted func-
tion for curvature sensitive keeping.

In order to improve the stability of the adaptively-isotro-
pic resampling, the number of adaptive length values {lh} is
controlled in a small range. Each value corresponds to a
range of hc. The correspondence is shown as

lhðpiÞ ¼ lq; hcðpiÞ 2 ½hq; hqþ1�;
lq 2 ½l1; . . .lt�; q 2 ½1; . . .; t�;

�
(10)

where lhðpiÞ is the adaptive distance which is computed
by range judgment of hcðpiÞ. Values of hc are classified
into t groups. If hcðpiÞ belongs to a range of group
qðhcðpiÞ 2 ½hi; hiþ1�), then the corresponding value lq of
group q is assigned to lhðpiÞ. Using the same method of iso-
tropic resampling and adaptive length values flqg, we
achieve the adaptively-isotropic resampling. For flqg selec-
tion, we choose different multiples of original average
length l, which are convenient to change. In Fig. 10, we
show some instances of adaptively-isotropic resampling
with different t and lq.

For sharp edge keeping, edge points are detected by the
edge detection method [58]. Similar to curvature sensitive
keeping, density of edge points can be increased by smaller
length le. During the isotropic resampling, we do not change
edge point’s positions which maintains sharp edges in the
resampling result. Some details of the implementation have
been discussed in our previous work [59]. Following differ-
ent kinds of h, we can achieve various adaptively isotropic
resampling results to fit certain requirement. In Fig. 11,
some resampling instances are shown.

5 APPLICATIONS

Based on the I&I resampling framework, we implement sev-
eral applications including point cloud simplification, mesh
reconstruction, and shape registration. For point cloud sim-
plification, the I&I resampling can be used without any
adjustments. The simplification result of I&I resampling
keeps the geometric consistency and global uniform density
with less point number. For mesh reconstruction, the I&I
resampling improves the accuracy for local region detec-
tion. Using the classical Delaunay triangulation method [60]
on resampling result, the accurate reconstructed mesh can
be achieved directly.

For shape registration, our resampling method improves
the efficiency of transform matrix computation. In [9], a

point cloud normalization method can be used to be an
effective initialization for registration. However, it requires
the global uniform density and the same point numbers for
both input point clouds to be registered. Our resampling
makes any input point clouds to meet the two requirements.
Combining with the normalization [9], it can be applied for
registration and the influence of different scales and loca-
tions can be removed. The registration energy is repre-
sented as

Ed ¼ HðKsðPiÞ; O:KsðPjÞÞ; (11)

where Ed represents the registration energy, computed by
Hausdorff distance H, KsðPiÞ is the normalization of point
cloud Pi, O is the rotation matrix. The target of registration
can be regarded as the optimization of Ed by searching O.
To achieve the solution of O, we build a candidate set fOg
and this is achieved from the rotation with certain angle u.
Selecting the Oi with minimum value of Ed to be the initial
Oinit. The optimization based on fOg is represented as

Oinit ¼ fOijminEdðOiÞg; Oi 2 fOg;
fOg ¼ fðu:x; u:y; u:zÞjx; y; z 2 ½0; 2p=u�g; (12)

where u:x means to rotate around the X axis with u:x
degrees, x is an integer, x 2 ½0; 2p=u� (u ¼ p=12 be default).
u:y and u:z share the similar definition to u:x. Based on the
Oinit, we use the ICP [61] to achieve more accurate O.
Finally, the registration result is achieved. The most signifi-
cant advantage of our shape registration is that the method
does not require any feature analysis such as normal match-
ing, 3D keypoint extraction, different shape operators, etc.

Fig. 10. Some instances of adaptively-isotropic resampling for curvature sensitive keeping. A:(t ¼ 5; lq 2 f2.0 l; 1:5 l; l; 0:8 l; 0:6lg); B:(t ¼ 5; lq 2
f1.5 l; 1:3 l; l; 0:9 l; 0:8lg); C:(t ¼ 5; lq 2 f1.2 l; 1:1 l; l; 0:95 l; 0:9lg); D:(t ¼ 3; lq 2 f1.5 l; l; 0:6lg); E:(t ¼ 3; lq 2 f1.2 l; l; 0:8lg).

Fig. 11. Some instances of isotropic and adaptively-isotropic resampling
results. A: isotropic resampling; B: adaptively-isotropic resampling for
curvature sensitive resampling; C: adaptively-isotropic resampling for
sharp edge keeping.
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In experiments, we evaluate the performance of our resam-
pling method for the applications.

6 EXPERIMENTS

We evaluate the performance of our resampling method in
different applications which include point cloud simplifica-
tion, mesh reconstruction, and shape registration. The
experimental point cloud models are collected from Stan-
ford [62], SHREC [63], and RGB-D scene [64] models. We
implement the framework in Visual Studio 2019, X64 plat-
form. The hardware configuration of the experimental
machine is equipped with Intel Xeon W-2133 3.6 GHz, 32 G
RAM, and Quadro P620. The rest of the experimental part is
organized as follows: 1. results of denoising; 2. evaluation
of simplification; 3. evaluation of mesh reconstruction; 4.
evaluation of shape registration; 5. efficiency analysis of our
resampling result which includes time complexity and algo-
rithm convergence.

6.1 Results of Denoising

In Section 3.1, we have introduced our denoising method in
point cloud pre-processing. To evaluate the performance of
our denoising method, we provide a denoising measurement
between our denoising method and peer ones, including
Bilateral filter [48], Gaussian filter [49], and PointClean-
Net [65]. We generate a noisy point cloud set from Stanford
and SHREC models. The noisy point cloud set includes three
kinds of noisy models: 0.33 Gaussian noise, 0.66 Gaussian
noise, and random outliers. Let li to represent the average dis-
tance between a point pi to its k (k ¼ 6) neighbors. We add a
randommovement for each point according to normal vector
to generate Gaussian noise. With different ranges (½0; 0:33li�

and ½0; 0:66li�) of the movement, the related noisy models can
be achieved. To generate random outliers, we randomly select
some points andmove them according to normal vectors with
a range (½3li; 6li�). Based on the three kinds of noisy models,
we compare the performance of different denoising methods
by geometric average errors [31], [46]. The geometric average
errors represent the geometric consistency between denoising
results and ground truth, which are implemented by [46]. In
Fig. 12, we show some instances of denoising results by differ-
ent methods. In Tables 1 and 2, we compare the geometric
average errors of differentmethodswith time report. It proves
that our method achieves better performance of denoising,
especially for noisy point clouds with random outliers. Our
method is faster than PointCleanNet (the number of iteration
steps in PointCleanNet is set to three by default).

6.2 Evaluation of Simplification

The target of the simplification is to simplify a point cloud
while keeping the geometric consistency. In a quantitative

Fig. 12. Comparisons of denoising results. From top to bottom: 0.33
Gaussian noisy models and related denoising results; 0.66 Gaussian
noisy models and related denoising results; random outliers and and
related denoising results.

TABLE 1
Geometric Average Error-Based Evaluation for Different

Denoising Methods

Noisy Point Clouds
= Points

Bilateral
Filter

Gaussion
Filter

Point-
CleanNet

Ours

Angel(0.33)= 237,018 0.001121 0.002105 0.001766 0.001451
Angel(0.66)= 237,018 0.001895 0.003851 0.009576 0.00168
Angel(Outlier)=
237,018

0.007151 0.004891 0.002337 0.000562

Armadillo(0.33)=
172,974

0.003801 0.002524 0.003126 0.002257

Armadillo(0.66)=
172,974

0.004604 0.005169 0.003948 0.002798

Armadillo
(Outlier)= 172,974

0.01557 0.01391 0.005732 0.001436

Bunny(0.33)= 35,947 0.010906 0.008218 0.008257 0.004693
Bunny(0.66)= 35,947 0.01526 0.024622 0.012222 0.006793
Bunny(Outlier)=
35,947

0.06163 0.06241 0.07866 0.00284

Cat(0.33)= 15,017 0.002899 0.004032 0.003409 0.004805
Cat(0.66)= 15,017 0.003238 0.007807 0.006693 0.005637
Cat(Outlier)= 15,017 0.01183 0.01246 0.02821 0.00225
Hand(0.33)= 20,470 0.006672 0.0108 0.004436 0.004558
Hand(0.66)= 20,470 0.007432 0.011328 0.006722 0.00821
Hand(Outlier)=
20,470

0.01853 0.01855 0.009078 0.003062

TABLE 2
Time Report for Different Denoising Methods (Average Time in

Seconds for Different Kinds of Noisy Point Clouds)

Noisy Point Clouds
= Points

Bilateral
Filter

Gaussion
Filter

Point-
CleanNet

Ours

Angel=237,018 2832.61 s 117.06 s 1213.83 s 326.97
s

Armadillo=172,974 304.47 s 37.69 s 400.14 s 237.17
s

Bunny=35,947 46.79 s 7.71 s 51.27 s 48.62 s
Cat=15,017 18.65 s 3.36 s 30.51 s 20.55 s
Hand=20,470 20.89 s 4.56 s 37.02 s 28.22 s
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view, it should minimize the MLS surface fitting error
from the input point cloud to the simplification. The geo-
metric error analysis also can be used to measure the fit-
ting error, including geometric maximum and average
errors. The geometric maximum error represents the
upper MLS fitting error. To show the performance of our
resampling method, we compare several mainstream
simplification methods, including Locally Optimal Pro-
jection-based simplification (LOP) [66], Robust Implicit
MLS-based simplification (RIMLS) [67], Laplacian graph-
based uniform resampling [39], Centroidal Voronoi Tessella-
tion (CVT) [19], Particle-based resampling [20], and PU-
Net [68]. The LOP-based simplification and Centroidal Voro-
noi Tessellation are implemented by the CGAL library,
which is a computer graphic toolbox. The Robust Implicit
MLS-based simplification is implemented in MeshLab. The
Laplacian graph-based uniform resampling is realized with
the same platform of our resampling method. The optimiza-
tion of particle-based resampling is processed by a hybrid L-
BFGS tool: HLBFGS. The code of PU-Net is provided by the
author.

Test point clouds are collected from Stanford and RGB-D
scene models. Each point cloud from the two datasets is a
dense one which is convenient to be simplified by different
simplification methods. The number of points of these point
clouds ranges from about 30,000 to 3,000,000. We specify
the simplification point number to 10,00 or 50,000 for differ-
ent point clouds. In Fig. 13, we show the visualization of the
simplification results by different methods. It is clear that

our method achieves similarly isotropic resampling results
than the state-of-the-art. In Table 3, we compare the geomet-
ric error analysis results of different methods. The results
show that our resampling method achieves a better balance
between isotropic resampling and geometric consistency
keeping. Some methods based on tangent space optimiza-
tion may fail to achieve accurate simplification result in the
region with sharp curvature changes (labeled by ”Nan” in
Table 3, means ”not a reasonable number”). Benefited from
the intrinsic control, such failure can be avoided in our
resampling method.

As mentioned in Section 4.2, our method can keep sharp
edges in simplification result by adaptively-isotropic resam-
pling and edge detection method [58]. To evaluate the perfor-
mance of sharp edge keeping, we collect some point clouds
with sharp edges to be the test set. We compare some simplifi-
cation methods, including WLOP simplification [33] and
edge-aware resampling [69]. In Fig. 14, we show the visualiza-
tion of the simplification results with sharp edges by different
methods. In Table 4, we compare the geometric error analysis
results of different methods. The results show that our resam-
pling method achieves a better balance between sharp edge
keeping and geometric consistency keeping.

6.3 Evaluation of Mesh Reconstruction

To evaluate the performance of our resampling method for
mesh reconstruction, we introduce two metrics for recon-
struction quality measurement: triangle quality measure-
ment [70], [71] and Hausdorff distance [72]. The triangle

Fig. 13. Comparisons of simplification results by different methods. Model: Asian Dragon and 03scene; simplification number: 20,000.
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quality measurement is used to measure the isotropic prop-
erty of the reconstructed mesh, which is computed by Qt ¼
6ffiffi
3

p � St
ptht

, t represents a triangle in the reconstructed mesh. St

is the area of t. pt is the in-radius of t. ht is the longest edge
length of t. The measurement includes the minimum and
average values of Qt from the reconstructed mesh. The
Hausdorff distance can be used to measure the geometric
consistency between reconstructed mesh and original point
cloud.

To show the advantages of our method for reconstruc-
tion, we compare several popular mesh reconstruction
methods, including Scale Space [73], Screened Poisson [27],
Advancing Delaunay Reconstruction [60], [74], CVT [19],
and Particle-based reconstruction [20]. The CVT and Parti-
cle-based reconstruction methods have been discussed
before. The two methods resample an input point cloud
into an isotropic one. Based on an isotropic point cloud, the
reconstructed mesh can be achieved conveniently. The
Scale Space-based reconstruction is to detect the local
region from a ball space. The Screened Poisson reconstruc-
tion is a global optimization strategy that is used to define
different sides of the 2-manifold. The Advancing Delaunay
triangulation is a classical method for mesh reconstruction.
It detects the local regions from a point cloud by Voronoi
Diagram. The Scale Space and advancing Delaunay trian-
gulation are implemented by the CGAL library. The
Screened Poisson reconstruction is processed by the related
project: Poisson Version 8.0. Some methods (Scale Space
and Advancing Delaunay) cannot control the output point
number. For an unbiased comparison, we resample the
point cloud by Poisson disk resampling [75] to uniform the
point number before reconstruction of the twomethods.

Test point clouds are selected from SHREC and RGB-D
scene models. Most models from SHREC are non-uniform
and sparse point clouds, which increases the difficulty for
mesh reconstruction. Each point cloud in RGB-D scene data-
set belongs to multi-objects model. We set the target point
number to 10,000 or 20,000 in the reconstructed mesh. In
Fig. 15, we compare the reconstructed meshes by different
methods. The results show that our method achieves better
isotropic property in the reconstructed meshes. In Tables 5
and 6, we show the triangle quality measurement and Haus-
dorff distance results of different methods. Based on the
experimental results, our methods achieves similar Haus-
dorff distances and better isotropic property with other
methods. The results prove that our method obtains better
balance between geometric consistency and mesh quality.
In Figs. 16 and 17, we compare different reconstructed
meshes with sharp edges and multi-objects. Our recon-
structed mesh keeps more accurate details of geometric fea-
tures and better isotropic property. More details of sharp
edge keeping in mesh reconstruction are discussed in
another of our work [59].

For curvature sensitive keeping, our adaptively-isotropic
resampling achieves a balance between isotropic property
and adaptive density based on curvature. The adaptive
remeshing [57] is used to compare with our method. In
Fig. 18, we show the reconstructed meshes with curvature
sensitive keeping. The results show that our method keeps
better balance. For further quantitative analysis, we calcu-
late mean values of triangle quality measurement and mini-
mum inner angle statistics from test models. In Fig. 19, we
compare the mean values between adaptive remeshing [57]

Fig. 14. Comparisons of simplification results by different methods.
Model: Block; simplification number: 10,000.

TABLE 4
Geometric Error Analysis of Different Simplification Methods

Method WLOP EdgeAware Ours

Models Points Max Avg Max Avg Max Avg

Fandisk 10,000 0.0311 0.0018 0.0507 0.0059 0.0159 0.0014
Block 10,000 0.0273 0.0025 0.0345 0.0035 0.0177 0.0017
Joint 10,000 0.0448 0.0027 0.0398 0.0083 0.0307 0.0022
Fandisk 20,000 0.0194 0.0009 0.0215 0.0018 0.0123 0.0008
Block 20,000 0.0192 0.0013 0.0229 0.0025 0.0122 0.0010
Joint 20,000 0.0289 0.0015 0.0338 0.0026 0.0207 0.0010

TABLE 3
Geometric Error Analysis of Different Simplification Methods

Method LOP RIMLS Laplacian CVT Particle PU-Net Ours

Model = Points Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

Bunny=1,000 0.0881 0.0137 0.1304 0.0233 0.0744 0.0156 0.1206 0.0194 0.0935 0.0155 0.0253 0.0052 0.0735 0.0158
Armadillo=1,000 0.0789 0.0135 0.2245 0.0181 0.0634 0.0134 0.2067 0.0155 0.0955 0.0138 Nan Nan 0.2504 0.0214
Angel=5,000 0.0391 0.0038 0.1103 0.0215 0.0412 0.0039 0.0234 0.0042 0.0503 0.0039 Nan Nan 0.0226 0.0039
Dragon=5,000 0.0541 0.0079 0.3008 0.0453 0.0331 0.0057 0.0394 0.0064 0.0458 0.0057 0.0268 0.0044 0.0369 0.0056
Buddha=20,000 0.0194 0.0027 0.0259 0.0028 0.0546 0.0089 0.0204 0.0032 0.0518 0.0062 0.0239 0.0045 0.0189 0.0026
Thai Statue=20,000 0.0249 0.0034 0.2054 0.0046 0.0602 0.0035 Nan Nan 0.0633 0.0092 Nan Nan 0.0186 0.0031
03scene=20,000 0.0734 0.0057 0.2171 0.0217 Nan 0.0232 0.0435 0.0019 0.0587 0.0079 0.1696 0.0095 0.0552 0.0015
04scene=20,000 0.0913 0.0053 0.1271 0.0121 0.0547 0.0102 0.0349 0.0019 0.0471 0.0053 0.1702 0.0107 0.0406 0.0017
03scene=50,000 0.0671 0.0029 0.1241 0.0143 0.0611 0.0012 0.0363 0.0012 0.0648 0.0011 0.1449 0.0083 0.0662 0.0009
04scene=50,000 0.0844 0.0041 0.1122 0.0112 Nan 0.0029 0.0327 0.0012 Nan 0.0032 0.1639 0.0097 0.0264 0.0011
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and our method. The results show that our method achieves
better isotropic property in reconstructed meshes with cur-
vature sensitive keeping. Benefited from the weighted func-
tion field, our reconstructed meshes have smooth density
changes based on curvature. The smooth density changes
means that the related areas of different points should be
inversely proportional to the curvature values (the related
area is the area of Voronoi cell for a point). To evaluate the
smoothness, we calculate the related area change curve
based on the relationship between curvature value and
related area for each point. In Fig. 20, the curves in two test
sets are shown. Our curves are smoother while keeping bet-
ter monotonicity. It proves that our method achieves better
curvature sensitive property with more stable performance.
In Fig. 21, we shown some resampling and mesh reconstruc-
tion results for point clouds with more complex geometric
structures. Some more results are provided for download:
test models.

6.4 Evaluation of Registration

As mentioned before, we provide a shape registration appli-
cation based on our resampling method and this improves
the efficiency of transform matrix computation in the

Fig. 15. Comparisons of mesh reconstruction results. Model: Hand and Giraffe; point number: 10,000.

TABLE 5
Triangle Quality Measurement by Different Reconstruction Methods in SHREC (10,000 Points)

and RGB-D Scene (20,000 Points) Models

Method ScaleSpace ScreenPoisson Advancing Delaunay CVT Particle-based Ours

Model Qmin Qavg Qmin Qavg Qmin Qavg Qmin Qavg Qmin Qavg Qmin Qavg

Ant Nan 0.65 Nan 0.61 0.13 0.71 0.45 0.88 Nan 0.74 0.56 0.91
Centuar Nan 0.65 Nan 0.61 0.11 0.72 0.42 0.87 Nan 0.71 0.59 0.91
Giraffe Nan 0.64 Nan 0.62 0.13 0.70 0.33 0.88 Nan 0.71 0.64 0.91
Hand Nan 0.68 Nan 0.61 Nan 0.72 0.38 0.88 Nan 0.78 0.57 0.91
WoodMan Nan 0.62 Nan 0.61 Nan 0.68 0.22 0.88 Nan 0.72 0.54 0.91
02scene Nan 0.74 — — Nan 0.77 Nan 0.76 Nan 0.60 Nan 0.81
03scene Nan 0.75 — — Nan 0.77 Nan 0.76 Nan 0.60 0.16 0.83
04scene Nan 0.74 — — Nan 0.77 Nan 0.77 Nan 0.60 0.12 0.83

TABLE 6
Hausdorff Distances by Different Reconstruction Methods in
SHREC (10,000 Points) and RGB-D Scene (20,000 Points)

Models

Method
Model

Scale Screen Advancing
Delaunay

CVT Particle Ours

Ant 0.0290 0.1053 0.0176 0.0183 0.0561 0.0172
Centuar 0.0352 0.3983 0.0281 0.0208 0.0762 0.0251
Giraffe 0.02031 0.2498 0.0110 0.0157 0.0202 0.0809
Hand 0.0347 0.2938 0.0216 0.0215 0.0265 0.0779
WoodMan 0.0244 0.1479 0.0110 0.0160 0.0253 0.0171
02scene 0.3211 — 0.3214 0.3739 0.0957 0.0610
03scene 0.1398 — 0.1403 0.2346 0.0905 0.0808
04scene 0.0275 — 0.0173 0.2015 0.0543 0.0310
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registration. We compare different classical shape registra-
tion methods to show the improvement, including ICP [61],
FPFH [34], Go-ICP [76], PointNetLK [28], and PCRNet [29].
The ICP and FPFH are implemented by the PCL library.

The codes of Go-ICP, PonitNetLK and PCRNet are provided
by related projects on Github.

Test point clouds are collected from RGB-D scene and
SHREC models. The source point clouds and target point
clouds are resampled with non-uniform density distribu-
tion, different scales, random locations, and random rota-
tions. The point clouds collected from RGB-D scene models
are used to evaluate the performance of multi-object mod-
els’ registration. In Fig. 22, we show some shape registration
results by different methods. It is clear that our method
achieves better results for the multi-objects models with dif-
ferent scales, locations, and rotations. To quantify the qual-
ity of registration, we compute mean squared errors of
point distance between the registered point clouds (red)
and target point clouds (blue). In Table 7, the distances are
shown from different registration methods. Our registration
method achieves better results.

Fig. 16. Comparisons of mesh reconstruction results with sharp edges by different methods. Model: Fandisk and Joint; point number: 10,000.

Fig. 17. Comparisons of mesh reconstruction results with multi-objects by different methods. Model: 02scene and 03scene; point number: 20,000.

Fig. 18. Comparisons of curvature sensitive mesh reconstruction results.
First row: results by adaptive remeshing [57]; second row: results by our
resampling method (t ¼ 5; lq 2 f2.0 l; 1:5 l; l; 0:8 l; 0:6lg). Model: Ant,
Hand, and Centaur.

Fig. 19. Comparisons of triangle quality measurement and minimum
inner angle statistics results by adaptive remeshing (A-Remesh) [57]
and our method. SF: Stanford Models; SR: SHREC Models.

Fig. 20. Comparisons of related area change curves from adaptive
remeshing (A-Remesh) [57] and our method (left: curves in Stanford
models; right: curves in SHRECmodels).
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We also build a subset with defective point clouds
from SHREC. It is used to evaluate the robustness of dif-
ferent registration methods. In Fig. 23, we compare the
registration results by different methods. In Table 8,

mean squared errors of point distance are shown from
different registration methods. The results prove that our
method achieves better performance for registration of
defective point clouds (red). In summary, the registration

Fig. 21. Some resampling and mesh reconstruction instances by our method. The third column: the mesh reconstruction is based on isotropic resam-
pling; the fifth column: the mesh reconstruction is based on adaptively-isotropic resampling.
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can be improved based on our resampling method with-
out any complex framework.

6.5 Efficiency Analysis

We provide the efficiency analysis for our resampling
method, which is constructed by time complexity and algo-
rithm convergence analysis. For our resampling framework,
the computation includes efficient intrinsic control and geo-
metrically-optimized resampling. The time complexity of
the efficient intrinsic control implementation is about
OðnlognÞ that is decided by the construction of the geodesic
coordinate system. For geometrically-optimized resam-
pling, the time complexity is approximately equal to
OðsmkÞ, s is the iterative steps of isotropic resampling
(s 2 ½5; 10�), m is resampling point number by application
requirement or user-specified, and k is the neighbor point
number for neighbor structure detection.

For simplification, our method achieves better perfor-
mance than other mainstream resampling methods. In
Fig. 24 A, we show a graph of time cost reports by different
methods for simplification (10,000 points in simplification
result). We also provide the time cost reports (Tables 9 and
10) in extreme cases (input point number: 5 k�5,000 k, out-
put point number: 1 k�1,000 k). It shows that our resam-
pling method has good performance when the output point
cloud number is lower than 50 k. However, the performance
of our method is reduced when the specified number of out-
put points is greater than 1,000 k. The reason is that the time
cost of Delaunay triangulation for all points is huge. For
mesh reconstruction, some methods that can not control the

point number in the reconstructed mesh are removed. Com-
paring different methods, the Screened Poisson achieves
better performance than other methods. However, most
geometric features are lost in reconstructed mesh and the
isotropic property is not good. The point number can be
controlled into a rough range but not an accurate number.
In Fig. 24 B, we compare time cost reports from different
reconstruct methods (with 10,000 points). Although our
method is not faster than some methods, it achieves a better
balance between effectiveness and isotropic property. The
storage cost of our method depends on the volume of input
point cloud (related to peak value of storage cost) and out-
put point number specified by user or application (related
to median value of storage cost). A rough estimation is pro-
vided: input point clouds 5k(8 MB)�5,000k(400 MB); output
point clouds 1k(6 MB)�1,000k(120 MB).

For convergence analysis, we compare the uave(average
inner angle of reconstructed mesh), Qave, and mean squared
distance in different iterations of mesh reconstruction and
registration. uave and Qave represent the quality of the isotro-
pic property and mean squared distance evaluates the accu-
racy of registration. In Figs. 25 and 26, convergence reports
are shown from different reconstruction and registration
methods. Benefited from the geometrically-optimized
resampling method, the I&I resampling achieves faster con-
vergence speed. It avoids complex optimization while keep-
ing accuracy in the resampling process. For shape
registration, our method achieves better performance for
point clouds with defective parts, different scales and rota-
tions. Above all, it proves that our resampling framework

Fig. 22. Comparisons of shape registration results for multi-object point clouds from RGB-D scene models. Model: 01scene and 05scene.

Fig. 23. Comparisons of shape registration results for defective point clouds from SHREC models. Model: Cat and Woodman.
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can be used to improve different point cloud-based applica-
tions without any other complicated algorithms.

Our method achieves better performance for resampling
and improvement for related applications, but some limita-
tions are still exist, which can be concluded into two parts:
efficiency of computation and accuracy for city-scale point
clouds. According to the experiments, the efficiency of our
resampling is reduced when the output point number is
larger than 50 k. The time cost of the geodesic coordinate
system mapping and Delaunay triangulation with intrinsic
control is proportional to the point number. Based on the
current version, our method focuses on single object or
indoor scene resampling. For city-scale point clouds, the
performance of our method may be reduced without

TABLE 8
Mean Squared Errors (MSE) of Point Distance by Different Reg-

istration Methods in SHREC Models

Method Model ICP FPFH Go-ICP PNLK PCR-Net Ours

Ant 6.81E-3 1.07E-6 1.53E-2 1.15E-1 1.69E-2 4.43E-3
Cat 1.35E-3 1.37E-3 8.36E-2 9.65E-3 2.01E-2 2.23E-4
Centuar 1.33E-2 9.70E-7 8.87E-2 2.50E-2 5.06E-2 6.61E-4
Dog 1.21E-2 1.10E-3 8.70E-2 7.10E-2 5.81E-2 1.85E-4
Giraffe 7.41E-4 7.39E-4 2.45E-1 8.73E-3 1.30E-2 4.58E-5
Girl 2.19E-3 1.33E-3 2.28E-2 6.01E-2 4.92E-3 3.42E-4
Hand 3.34E-3 2.95E-3 1.37E-1 1.22E-2 6.83E-3 6.09E-5
Wood-Man 7.74E-3 3.55E-3 4.62E-1 3.29E-2 1.90E-2 6.35E-5

Time 15.65 s 75.26 s 52.36 s 4.78 s 3.26 s 37.16 s

Fig. 24. Comparisons of time cost reports of different methods. A: simpli-
fication methods; B: mesh reconstruction methods(S-Poisson: Screened
Poisson).

TABLE 9
Time Cost Report of Our Resampling Method (Previous Steps)

in Extreme Cases

Mapping into the geodesic coordinate system

Output\Input 50 K 100 K 500 K 1,000 K 5,000 K

1 k 1.46 s 1.48 s 1.56 s 1.67 s 2.27 s
5 k 6.49 s 7.81 s 7.96 s 8.91 s 12.25 s
10 k 11.86 s 15.56 s 16.14 s 19.45 s 23.06 s
50 k — 61.66 s 103.28 s 105.36 s 123.06 s
100 k — — 201.75 s 203.02 s 220.36 s
500 k — — — 736.23 s 784.36 s
1,000 k — — — — 1365.84 s

Delaunay triangulation with the intrinsic control
Output\Input 50 K 100 K 500 K 1,000 K 5,000 K
1 k 0.84 s 0.87 s 1.99 s 1.19 s 1.21 s
5 k 4.63 s 4.78 s 6.51 s 6.71 s 7.88 s
10 k 8.04 s 9.87 s 16.81 s 17.22 s 16.31 s
50 k — 69.17 s 251.92 s 268.24 s 283.56 s
100 k — — 744.26 s 916.16 s 923.56 s
500 k — — — >1 h >1 h
1,000 k — — — — >1 h

TABLE 10
Time Cost Report of Our Resampling Method in Extreme Cases

Output\Input 50 k 100 k 500 k 1,000 k 5,000 k

1 k 15.44 s 15.61 s 16.51 s 16.74 s 18.95 s
5 k 45.41 s 47.21 s 51.82 s 56.45 s 57.54 s
10 k 81.53 s 85.59 s 92.32 s 98.36 s 106.28 s
50 k — 405.24 s 683.31 s 742.29 s 753.69 s
100 k — — 2004.27 s 2157.35 s 2192.02 s
500 k — — — >1 h >1 h
1,000 k — — — — >1 h

TABLE 7
Mean Squared Errors (MSE) of Point Distance by Different Reg-

istration Methods in RGB-D Scene Models

Method Model ICP FPFH Go-ICP PNLK PCR-Net Ours

01scene 4.75E-3 4.76E-3 4.86E-3 1.84E-2 2.16E-1 2.63E-4
02scene 3.21E-2 2.29E-2 3.52E-6 7.95E-1 1.99E-1 3.44E-4
03scene Nan 1.86E-2 3.11E-2 7.93E-1 4.69E-1 3.02E-4
04scene 1.49E-2 1.14E-2 1.70E-2 3.29E-1 7.23E-2 3.61E-4
05scene 3.32E-6 1.01E-6 2.62E-6 1.57E-5 1.16E-1 3.10E-4
06scene 8.08E-3 8.06E-3 8.78E-3 5.26E-2 2.76E-2 7.11E-1
07scene 8.54E-5 8.54E-5 8.62E-5 8.64E-5 1.03E-1 2.00E-4
08scene 5.97E-2 3.06E-3 3.15E-3 1.58E-1 1.17E-1 3.97E-4
09scene 1.14E-2 1.15E-2 1.18E-2 1.57E-1 1.64E-1 6.43E-4
10scene 7.91E-3 9.20E-2 7.95E-3 4.29E-2 5.93E-1 5.83E-4
11scene 6.53E-3 6.53E-3 6.75E-3 4.65E-2 2.38E-1 8.07E-4

Time 159.32 s 225.36 s 326.23 s 69.32 s 5.49 s 56.32 s

Fig. 25. The convergence reports (A:uðtÞ and B:QðtÞ) of different mesh
reconstruction methods (ISO: isotropic remeshing [56]).

Fig. 26. The convergence reports (A: point clouds with random scales,
rotations and translations and B: defective point cloud subset) of differ-
ent shape registration methods.

3288 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 3, MARCH 2023



structural optimization or segmentation. The reason is that
such point clouds have multiple objects stick to each other.
The neighbor structure cannot be accurately detected even
in the geodesic coordinate system. An instance is shown in
Fig. 27. In future work, we will design a sub-division strat-
egy to improve the efficiency and accuracy for large-scale
scenarios.

7 CONCLUSION

We have proposed an I&I resampling framework which is
constructed by efficient intrinsic control and geometrically-
optimized resampling. The efficient intrinsic control
improves the accuracy of local region detection for a point
cloud while avoiding the redundant geodesic computation.
The geometrically-optimized resampling method can be
used to achieve an isotropic or adaptively-isotropic resam-
pling result without complex optimization. The framework
avoids drawbacks of tangent space-based resampling,
including loss of geometric feature and inaccurate local
region detection. Using our framework, the intrinsic and
isotropic resampling can be processed at the same time
while keeping all advantages of both. The I&I resampling
provides a new technical route for point cloud processing.
Experiments have proved that the I&I resampling frame-
work can improve the accuracy, robustness, and conver-
gence speed in different applications.
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