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Abstract— A point cloud as an information-intensive 3D rep-
resentation usually requires a large amount of transmission,
storage and computing resources, which seriously hinder its usage
in many emerging fields. In this paper, we propose a novel
point cloud simplification method, Approximate Intrinsic Voxel
Structure (AIVS), to meet the diverse demands in real-world
application scenarios. The method includes point cloud pre-
processing (denoising and down-sampling), AIVS-based real-
ization for isotropic simplification and flexible simplification
with intrinsic control of point distance. To demonstrate the
effectiveness of the proposed AIVS-based method, we conducted
extensive experiments by comparing it with several relevant point
cloud simplification methods on three public datasets, including
Stanford, SHREC, and RGB-D scene models. The experimental
results indicate that AIVS has great advantages over peers in
terms of moving least squares (MLS) surface approximation
quality, curvature-sensitive sampling, sharp-feature keeping and
processing speed. The source code of the proposed method is
publicly available. (https://github.com/vvvwo/AIVS-project).

Index Terms— Point cloud simplification, isotropic simplifica-
tion, intrinsic control, MLS surface, curvature-sensitive sampling,
sharp-feature keeping.

I. INTRODUCTION

W ITH the rapid development of 3D scanning technology,
using 3D point clouds to represent real-world objects

is becoming increasingly popular in recent years. A point
cloud comprises a set of points that carry geometry and
possible attribute information such as point position, color,
and texture. Unlike a polygonal mesh, it does not contain
any edges and facets. Such a data structure is often the
primary data format from the sensors, and more versatile and
flexible in creating and representing 3D models (thus is being
widely adopted in a wide range of applications including 3D
object recognition, scene reconstruction, industrial modeling
and so on). Although it exhibits unique advantages, there have
been several challenges in practice. Firstly, point clouds are
generally made up of high-density points. As a result, they
can be with huge data volume, which significantly increases
the cost of storage and transmission. Secondly, a dense point
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cloud may contain a considerable number of redundant points.
These points are not only dispensable in many cases but
could have a severe impact on the efficiency of downstream
tasks such as visualization, geometric feature training [1], and
localization [2].

To tackle the aforementioned challenges, point cloud sim-
plification [3] and compression [4] have been extensively
studied to eliminate the redundant information of point clouds.
Although these two approaches share similar ultimate goal,
their mechanisms and application scenarios are quite different.
Compression aims to reduce the size of a point cloud by
exploiting the spatial correlation among adjacent points. It can
be classified into two categories: lossless compression and
lossy compression. Lossless compression is a compression
technique that does not lead to a change in the original data
of a point cloud, while lossy compression, typified by the
trisoup scheme of the MPEG G-PCC, attempts to reduce
the data volume of an original point cloud by eliminating
some less important information. Simplification, however,
reduces the information redundancy of a given point cloud by
removing redundant points without significantly affecting the
performance of target tasks. These two techniques, in a sense,
are complementary and can be integrated into one pipeline.
That is, the simplification is first used to obtain a simplified
representation of a point cloud, and the compression is then
performed on the simplified point cloud to further reduce the
overhead of data storage, transmission and processing. In this
paper, we mainly focus on point cloud simplification.

There is a large body of research in the literature to suggest
effective point cloud simplification schemes, which can be
broadly divided into the following two categories, depending
on different targets. One kind of simplification work focuses
on retaining important local regions in a point cloud, such
as key-points [5], and visually sensitive areas [6], but other
geometric features of a point cloud may be lost. The other
category aims to construct a simplified representation from an
original point cloud while keeping important global geometric
features. An ideal simplification method that falls into this
category is expected to satisfy the following four require-
ments: 1) distribution uniformity of points in local regions;
2) geometric consistency with the original point cloud; 3) low
computational cost; 4) flexibility toward user specifications.
To be more specific, distribution uniformity of points in
local regions means that the points of simplification result
are approximately evenly spread along the underlying local
surface of the original point cloud, and this would be beneficial
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to point cloud visualization and maintaining the inherent
adjacency relationship among points. Geometric consistency
is referred to a condition that the simplification result holds
the important geometric features of the original point cloud.
Low computational cost requires that the run-time complexity
of a simplification algorithm should be efficient enough to
ensure its usability in real-world applications. It also would
be preferable to allow users to flexibly specify different sim-
plification settings such as curvature-sensitive sampling and
sharp-feature keeping. Currently, the most popular methods
such as Laplace graph-based simplification [3] and Centroidal
Voronoi Tessellation (CVT) [7] resampling cannot satisfy the
four conditions at the same time.

To meet these requirements, we propose a point cloud
simplification framework called Approximate Intrinsic Voxel
Structure (AIVS) that is constructed by two core compo-
nents: global voxel structure and local farthest point sampling
(local FPS). The global voxel structure is used not only to
decompose the simplification task of a point cloud into a
collection of subtasks that can be executed in parallel, but
also to provide intrinsic control of point distance. Based on
the intrinsic control of point distance, the simplification can
be regarded as an approximately intrinsic one and this keeps
better geometric consistency. In our framework, the local
FPS is developed to perform the simplification task in each
individual voxel box and sample a subset of points that are
locally uniform. By combining the global voxel structure and
local FPS, the AIVS can efficient simplify point clouds while
keeping the isotropic property (globally uniform density). The
AIVS also provides a flexible scheme to meet diversified
simplification demands, such as curvature-sensitive sampling
and sharp-feature keeping. It satisfies all aforementioned four
requirements for simplification tasks. The proposed pipeline
is shown in Figure 1. The contributions of this paper can be
summarized as:

• We propose an Approximate Intrinsic Voxel Structure
(AIVS), which provides a voxel box-based organization
for a point cloud. It makes a simplified point cloud to
be isotropic with the intrinsic control of point distance,
even when the input point cloud is non-uniform. Benefited
from the proposed intrinsic control, our simplification
result maintains better geometric consistency with the
original point cloud in terms of MLS surface.

• We provide an efficiently flexible simplification scheme
based on AIVS. The points are classified into different
categories according to user-specified classification and
related sampling rates. With different sampling rates for
categories, the different kinds of flexible simplifications
such as curvature-sensitive sampling and sharp-feature
keeping can be realized.

• We implement the parallel computation for AIVS-based
simplification to accelerate the process while keeping the
globally or locally uniform density of simplified point
clouds.

The rest of the paper is organized as follows. In Sec. II,
we introduce some classical works for point cloud simplifi-
cation. In Sec. III, we propose the formulation of our point

cloud simplification, followed by the details of AIVS-based
realization in Sec. IV. We demonstrate the effectiveness and
efficiency of our method with extensive experimental evidence
in Sec. V. Sec. VI concludes the paper.

II. RELATED WORKS

There are many methods in the literature for point cloud
simplification, which can be classified into three groups: global
simplification, local simplification, and deep learning-based
simplification.

The global simplification methods are constructed by differ-
ent global point sampling strategies. Classical methods include
geometric errors optimization [8]–[10], Voronoi diagram [11],
[12], global clustering [13]–[16], and Laplace graph [3],
[7], [17], [18]. Alexa et al. provided a point cloud-based
surface representation [8], which could be regarded as a basic
fundamental for point cloud simplification. This method first
defines a 2-manifold from a point cloud using moving least
squares (MLS) fitting, and then achieves simplification by
optimizing MLS errors. Another important fundamental is
intrinsic point cloud simplification, proposed by Moening and
Dodgson [11]. The contribution of the work is that it uses the
point cloud-based geodesic rather than the Euclidean distance
in Voronoi diagram to obtain more reasonable simplification
results that are in line with mathematical interpretation and
intuitive perception. Laplace graph-based point cloud simpli-
fication methods [3], [7] are becoming more popular in recent
years. Such methods optimize a weighted adjacency matrix
which is used to produce a simplified point cloud with uniform
density. Although more accurate simplification is achieved,
these methods are of high computational complexity and are
generally incapable of providing flexible local simplification
solutions.

The local simplification methods have also been exten-
sively investigated to improve the effectiveness of simpli-
fication and retain local geometric features. Lee et al. [19]
constructed 3D grid structure for point cloud simplification.
Xiao and Huang [20] proposed an efficient point cloud sim-
plification method based on kd-tree structure. Han et al. [21]
used the similar idea for edge-keeping simplification. Some
shape descriptors were devised for local geometric analysis
and simplification, such as DSO feature [22], sharp-feature
keeping [23], [24], Gaussian curvature [25], and saliency
detection [26]. The extraction of these features is performed
on the local regions of a point cloud, and the simplification
of the whole point cloud is an aggregation of the simpli-
fied points of all local regions. Although local simplification
methods provide a more flexible and efficient framework for
geometric features keeping, they may run the risk of losing
global features and fail to maintain the intrinsic and isotropic
properties of a point cloud. For extremely non-uniform
regions in a point cloud, those methods without global den-
sity analysis can easily result in unsatisfactory simplification
outcomes.

Both the aforementioned global and local simplification
methods rest on the fact that the simplified points are derived
from the original point cloud, without any modification of

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 23,2021 at 13:50:23 UTC from IEEE Xplore.  Restrictions apply. 



LV et al.: AIVS FOR POINT CLOUD SIMPLIFICATION 7243

Fig. 1. The pipeline of the proposed AIVS-based point cloud simplification method.

point positions. In contrast, there are many methods that
reduce points of point clouds using resampling schemes
such as Centroidal Voronoi Tessellation (CVT) [27]–[29] and
particle-based resampling [30]–[32]. These methods resample
the points in local tangent space and change the positions of
points. Strictly speaking, point resampling cannot be regarded
as point cloud simplification. The geometric features are
smoothed by the resampling and the neighbor points’ struc-
tures are updated.

Recently, the deep learning-based simplification or sampling
methods that are designed for special tasks such as classifi-
cation, registration and recognition are becoming more pop-
ular. These methods, including FoldingNet [33], KCNet [34],
SampleNet [35], [36], PAT [37], CPL [38], MOPS-Net [39],
PIE-NET [40], PointASNL [41], SK-Net [42], etc., attempt
to sample the points with sensitive characteristics for effective
feature learning. However, they do not achieve a good balance
between uniform density and geometric feature keeping. The
MLS surfaces of original point clouds are changed after
sampling.

In this paper, we focus on the simplification without chang-
ing the positions of points and attempt to strike a balance
between global and local simplification schemes. Before intro-
ducing the details our simplification framework, we propose
the formulation of our point cloud simplification in the fol-
lowing section.

III. PROPOSED FORMULATION OF POINT CLOUD

SIMPLIFICATION

In this section, we introduce the proposed formulation of
our point cloud simplification, which mainly includes two core
components: isotropic simplification and flexible simplifica-
tion. The intrinsic control of point distance is also discussed.
It also intends to introduce notations needed in the sections
that follow.

A. Isotropic Simplification

A point cloud is regarded as a discrete form of a 2-manifold,
which is represented by an MLS surface [9]. The contribution
of different points to MLS surface representation is different.
Some points can be removed without significantly affecting the
accuracy of MLS surface representation. Therefore, the goal of

Fig. 2. An instance of isotropic simplification and its 3D Voronoi diagram.

simplification is to remove redundant points while keeping the
geometric consistency of MLS surface as much as possible.
An MLS surface depends on the adjacency among points,
which can be represented with a distance field. The simplifica-
tion of a point cloud can be regarded as a process of selecting
a subset of points from the MLS surface while optimizing
its distance field. To this end, the isotropic simplification is
proposed.

The isotropic simplification means that the distances
between any adjacent points are approximately equal in sim-
plification result. It guarantees the correct adjacency among
points in a 1-ring region, which avoids the error-fitting in MLS
approximation. Figure 2 illustrates an instance of isotropic
simplification and its 3D Voronoi diagram. As can be seen
from the figure, the Voronoi cells of different points are
similar in an isotropic simplification. To achieve isotropic
simplification, it needs to optimize a distance field energy,
which is defined as

ED =
n∑

i=1

∫
r∩Ms

d(pi , p j ) d σ, (1)

where Ms represents the MLS surface defined by a point cloud
P , n is the simplified point number of P , r is the 1-ring
region of pi , d(pi , p j ) is the distance between a point pi

and its neighboring point p j in r . According to Equation 1,
ED is mainly determined by d and r . In most previous
studies [7], [17], [32], these two variables are defined in a
local tangent space. However, it is likely to introduce some
errors if there is sharp curvature in local regions. As shown
in Figure 3, the Euclidean distance between different points
cannot accurately represent the inherent adjacency among
points. To avoid this issue, we propose the intrinsic control
of point distance. It means that we use the geodesic distance
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Fig. 3. An instance of the wrong adjacent point based on Euclidean distance.
A: the red curve represents the MLS surface; B: the correct adjacent points of
point p0 are p1 and p2; C: p3 would be mistakenly identified as a adjacent
point of p0.

g rather than the Euclidean distance as the distance metric to
define the 1-ring region for each point. Then the 1-ring region
of a point is regarded as a geodesic Voronoi diagram Gr , and
the distance field energy can be reformulated as

EG =
n∑

i=1

∫
Gr ∩Ms

g(pi, p j ) d σ. (2)

In [11], a classical simplification method, global farthest
point sampling (global FPS), was proposed to simplify point
clouds. Theoretically, it provides a reasonable solution to
optimize Equation 2. However, the computation cost of global
FPS is huge and this hinders its use in practical applica-
tions. To solve the problem, we propose a new simplification
framework. Comparing to global FPS, our method improves
efficiency of simplification while keeping the intrinsic control
of point distance. The implementation will be discussed in
Sec. IV-B.

B. Flexible Simplification

Flexible simplification is used to satisfy special require-
ments such as curvature-sensitive sampling and sharp-feature
keeping. An existing solution is to sample points in a
high-dimensional manifold that is constructed by points with
normal vectors. In the manifold, the point distance considers
the influence of normal vectors. Such a distance reflects the
curvature changes in an MLS surface. The flexible simpli-
fication is achieved based on the distance dh in the high-
dimensional manifold. In this context, the distance field energy
EF is defined as

EF =
n∑

i=1

∫
r∩Mh

dh(vi , v j ) d σ, (3)

and

dh(vi , v j ) = ρ(v)
∣∣∣∣vi , v j

∣∣∣∣L
, (4)

where Ms represents the MLS surface as mentioned before,
Mh is the representation of Ms in the high-dimensional space.
EF for flexible simplification based on curvature is achieved
in Mh . In Mh , a 6-dimensional point vi is formed by the
position (3-dimensional) and normal (3-dimensional) vectors

of a point pi in Ms . The point distance in Mh is dh with
L norm. As mentioned before, the isotropic simplification
in Mh considers the influence of normal vectors of different
points. The density function ρ(v) defines impact of the normal
changes for dh . Mapping the isotropic simplification from Mh

into Ms , the simplification result can be transferred into a
curvature-sensitive flexible one. With different kinds of ρ(v)
and related dh , various flexible simplification results can be
achieved. In our framework, we propose an efficient scheme
to implement the flexible simplification.

In our framework, we realize the isotropic and flexible
simplification based on AIVS. Benefited from the AIVS,
the intrinsic control of point distance can be realized with
an efficient way and the simplification can be processed
by parallel computing while keeping the globally or locally
uniform density. In the following parts, we introduce the
details of our simplification methods.

IV. AIVS-BASED REALIZATION

In this section, we elaborate on the proposed AIVS-based
point cloud simplification framework from the following three
aspects: point cloud pre-processing, AIVS-based isotropic
simplification, and AIVS-based flexible simplification. It is
worthy noting that these proposed AIVS-based simplification
schemes are under the intrinsic control of point distance.

A. Point Cloud Pre-Processing

Many raw point clouds harvested from 3D scanning devices
contain noisy or/and non-uniform points. These points could
have an adverse impact on the performance of point cloud
simplification. Therefore, the pre-processing is needed before
simplification. In our framework, the pre-processing includes
denoising and density-adjusting.

For denoising, the theory of MLS surface representation is
utilized to smooth a point cloud. The smoothing operation
updates the location of a point by taking a weighted average
of its adjacent points, and this process can be thought of
as pulling a noisy point back to the MLS surface. More
specifically, for a point pi , it is replaced by a new point p′

i
after smoothing, and p′

i is calculated as

p′
i = ∑k

j=1
θ(

∣∣∣∣pi − p j
∣∣∣∣)p j∣∣∣∣∣∣∑k

j=1 θ(
∣∣∣∣pi − p j

∣∣∣∣)∣∣∣∣∣∣ , (5)

and

θ(d) = e
− d2

h2 , (6)

where p j is an adjacent point of pi , k is the total number of
adjacent point of pi in the search radius h, and θ is a distance
weighting function. It is suggested to fit a Gaussian func-
tion [43] in Equation 6. Without loss of generality, we show
an example of the smoothing process of a 2D point cloud
in Figure 4.

Next, we adjust the densities of different regions of the
obtained point cloud before performing simplification. The
reason is that our simplification framework is based on a
voxel structure. If the densities in different voxel boxes are
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Fig. 4. An instance of the smoothing process of a 2D noisy point cloud.

not similar, it is difficult to achieve a globally uniform sim-
plification. To adjust the density of a point cloud, we carry
out down-sampling using octree and this is widely used
in point cloud compression [4] and processing [44]. The
down-sampling process reduces the scale of a point cloud and
thus improves the efficiency of the whole processing pipeline,
especially when dealing with large-scale, high-density point
clouds. In Figure 5, we show an instance of octree-based
down-sampling. Let |P| and |Ps | be the number of points of
an original point cloud P and a simplified point cloud Ps ,
respectively, we estimate the octree voxel size Os as

Os = max{dk(pi , p j ), p j ∈ K (pi)}, (7)

and

k = max(
|P|

5|Ps| , 1), (8)

where K (pi ) is the set of the k-nearest neighbour points of
a point pi . The point number k of K (pi) is estimated by the
point number |P| of P and the simplification point number
|Ps |. The value of k should balance the effectiveness and
efficiency of down-sampling. If k is too large, the voxel scale
will be increased which makes the point cloud without enough
points for simplification with user-specified point number.
On the contrary, the point number of input point cloud will
not be reduced when the k is too small, which reduces
the efficiency of the down-sampling. To keep the balance,
we empirically control the value of k by Equation 8. That
is, when the original point number is significantly (5 times in
this work) more than the targeted simplification point number,
the value of k is increased according to 5 integer multiples of
the |P|/|Ps |; otherwise, it is chosen as 1. The equation makes
the balance between effectiveness and efficiency in practice.

B. AIVS-Based Isotropic Simplification

Following the formulation in Sec. III-A, we propose an
efficient AIVS-based isotropic simplification scheme with the
intrinsic control of point distance. The proposed AIVS is a
structure similar to voxelization and octree. The points of a
given point cloud are divided into different voxel boxes of
AIVS. Instead of using the global FPS [11], we use the local
FPS as the basic simplification strategy, with which we obtain
a simplified point cloud by iteratively searching the target point
from a given point cloud. Mathematically, let Pv be the point
set in voxel box v and Ps be the simplified point set, the target
point ps in Pv in each iteration is found by

ps = argmax
pi

d(pi , Ps), pi ∈ Pv , pi �∈ Ps , (9)

Fig. 5. An instance of octree-based point cloud down-sampling.

Fig. 6. The original points in a voxel box (left) and the fitting plane (right).
The points are approximately located in a local tangent plane.

Fig. 7. The simplification of points using the local FPS algorithm. Left:
a collection of points on the fitting plane; Middle: the Voronoi diagram of
the original points; Right: the Voronoi diagram of the simplified points. The
Voronoi diagram shows that the simplification is an isotropic one.

and

d(pi , Ps) = min{d(pi , ps ′)}, ps ′ ∈ Ps . (10)

That is, the local FPS is an iterative process that finds
a point in Pv but not in Ps such that it is farthest from
the points in Ps . It should be noted that there could be
multiple points achieving the maximum in Equation 9. In this
case, we randomly select one maximum point and add it
to Ps . Compared to the global FPS [11], the local FPS
uses Euclidean distance to approximate the geodesic distance
and processes each voxel independently, and this improves
the computational efficiency. Besides, since there is rarely
a sharp curvature variation between points in a voxel box,
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Fig. 8. The intrinsic control of point distance provided by AIVS. The
voxel box (blue) controls the adjacent points in the local space (black dotted
squares).

Fig. 9. A: The distances between the points in two dotted grey boxes
are not optimized. The distances are too small. B: adding adjacent limit
points (yellow) from the adjacent voxel boxes, the isotropic simplification
is achieved.

Fig. 10. An instance of parallel computing for simplification. The red box
represents the voxel box which is being simplified. The Pa1 and Pa2 are
different steps of parallel computing.

Fig. 11. A point cropping process. Compared to p1, the point p2 satisfies the
definition of redundant point. The sum of distance between p2 and its adjacent
points is smaller than that of p1. Therefore, the point p2 is removed.

it reduces the possibility of inaccurate MLS surface fitting.
We show an example of MLS fitting of a voxel box and its
simplification using the local FPS algorithm in Figures 6 and 7,
respectively.

The simplification of the whole point cloud is obtained by
combining the local FPS results of different voxel boxes. The
intrinsic control of point distance is added based on voxel
boxes. In Figure 8, we show an example of the intrinsic
control of point distance provided by AIVS. The distances

between different points are controlled inside the voxel box
or adjacent voxel boxes. The points (black) from non-adjacent
voxel boxes will not be considered by local FPS in current
voxel box. The intrinsic control of point distance keeps the
geometric consistency between the simplification result and
the original point cloud. However, the points’ distances are
not optimized in the boundary of adjacent boxes, which may
result in non-uniform sampling near the boundary of the
voxel boxes, as shown in Figure 9A. To solve the problem,
we add some points that have been selected into simplification
result from the adjacent voxel boxes to limit the non-uniform
sampling. These points, as shown in Figure8 and 9B (yellow),
are called adjacent limit points. The local FPS considers the
adjacent limit points around the boundary when performing
simplification. Then, the uniform density can be maintained
near the voxel boxes’ boundary.

Naturally, the proposed AIVS-based isotropic simplification
can be accelerated by parallel computation. Each voxel box
corresponds to a parallel computing unit. Considering the
adjacent limit points selection, the points from adjacent voxel
boxes are not simplified in a parallel computing step, i.e., the
adjacent voxel boxes should be arranged in different parallel
computing steps. In Figure 10, we show an instance of
simplification in different parallel computation steps. Once
the sampling point number in each voxel box is determined,
the local FPS results can be obtained by parallel computation.
Based on the octree-based down-sampling, the point number
is proportional to the corresponding MLS surface area. The
simplification rate Rv in each voxel box is set to |Ps |/|P|.
Then the simplification point number |Psv | in a voxel box is
|Pv | · Rv , where |Pv | is the point number of a voxel box before
simplification.

For some small-scale point clouds (|P| � 100, 000),
the octree-based down-sampling as an independent part is not
necessary. We simplify such point clouds directly. The simpli-
fication rate Rv of a voxel box should be changed. Without the
pre-processing of octree-based down-sampling, the uniform
density cannot be guaranteed. To solve the problem, we add an
MLS surface area estimation for all voxel boxes. The principle
is similar to octree. For each voxel box, the points are divided
into smaller secondary voxel boxes. If there are no points in a
secondary voxel box, the box is deleted. The simplification
rate Rv for voxel box v is replaced by the ratio of total
secondary voxel boxes number and secondary voxel boxes
number in v.

By combining the local FPS results of all voxel boxes,
the AIVS-based isotropic simplification of the whole point
cloud is obtained. However, the number of obtained simplified
point cloud may be larger than the one specified by the user.
The reason is that the simplification rate Rv for each box
produces remainder. Therefore, an accurate point cropping
process is required to remove some redundant points so that
the outcome is in line with the user-specified number of points.
Following the Equation 1, a point pi that has the closest
distance to its adjacent point set is detected as the redundant
point pd and removed; note that the distance between a point
and its adjacent point set is defined by the sum of distances
between the point and each points in the adjacent point set;
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Fig. 12. An instance of curvature-sensitive sampling using the proposed
AIVS-based flexible simplification scheme.

Fig. 13. Edge point detection. Left: a 3D model. Right: The detected edge
points are highlighted in red.

i.e., pd is determined as

pd = argmin
pi

∑
p j ∈R(pi )

d(pi , p j ), (11)

where point p j is an adjacent point of pi , and the adjacent
point set of pi is represented as R(pi ). In our implementation,
|R(pi )| is set to 2, to avoid the case that two points are too
close. The point cropping process searches redundant points
iteratively and deletes them until the number of the simplified
point cloud is equal to the user-specified one. In each iteration,
if several points share a same minimum distance, one of them
is selected to be pd randomly. In Figure 11, we show an
instance of point cropping process.

In a nutshell, the proposed AIVS-based isotropic simplifica-
tion method can be summarized as follows: 1. build the AIVS
for the point cloud after pre-processing so that each point is
assigned to a voxel box; 2. divide voxel boxes into different
steps for parallel computation; 3. compute the simplified
number of points of each voxel box for simplification; 4.
perform local simplification on each voxel box using the local
FPS algorithm; 5. obtain the simplified results of the whole
point cloud by combining the local simplification results of all
voxel boxes; 6. reduce the number of points of the simplified
point cloud to the user-specified number using the proposed
point cropping scheme. In Algorithm 1, we show the related
details.

C. AIVS-Based Flexible Simplification

Following the formulation in Sec. III-B, we also propose
an AIVS-based flexible simplification method. It constructs a
point classification-based simplification scheme to simulate the
density function discussed in Equation 4. The density of the
simplified points in a voxel box is decided by the simplification
rate Rv . If the points are classified into different categories
with different simplification rates, the flexible simplification
result can be achieved. The simplification rate Rv i of a
category ci can be computed

Rv i = βai , β = |Ps |
k∑

i=1
ai |Pi |

, (12)

where ai is the user-specified rate for category ci , |Pi | is the
number of points that belong to ci , and |Pv i | is the number
of points that belong to ci in voxel box v. For each category,
we use the user-specified rate ai to control the simplification
rate Rv i . With the different simplification rates, the flexible
simplification result can be achieved. Considering the point
numbers from different categories are not equal, the simplifi-
cation rate Rv i should be limited to a range (Rv i ∈ [0.1, 1])
to avoid sampling errors. For example, the input sampling
number is larger than exist points or equal to zero. With
the range restriction of Rv i , users can specify different ai to
perform simplification in each voxel box flexibly. In voxel box
v, Psv represents the simplification result, which is combined
from simplification results of related categories. The flexible
simplification results of the whole point cloud can be obtained
by combining Psv of each voxel box.

Based on Equation 12, we introduce the implementa-
tion of different kinds of flexible simplification, including
curvature-sensitive sampling and sharp-feature keeping. For
the curvature-sensitive sampling, points are classified into
different categories according to their corresponding curva-
ture. The curvature at each point is computed by averaging
the normal angles between it and its adjacent points. Then,
the point set Pi of category ci is defined as

Pi = {pci |Cu(pci) ∈ [Cumin(Pi ), Cumax(Pi )]}, (13)

where Cu(pci ) is the curvature of point pci , and Cumin(Pi )
and Cumax(Pi ) are the lower and upper curvature bound of
category ci , respectively. If we equally divide the curvature
range of a point cloud into |c| intervals, then the lower and
upper bounds of the i -th category are: Cumin(Pi ) = (i −
1)π/(2|c|), Cumax(Pi ) = iπ/(2|c|). Figure 12 illustrates an
instance of curvature-sensitive sampling using the proposed
AIVS-based flexible simplification scheme.

For sharp-feature keeping, the points of a point cloud are
classified into two sets: edge point set and ordinary point
set. As shown in Figure 13, edge points with sharp features
are generally located at the intersection of two MLS sur-
faces, where there is a wide variation of curvature. In our
implementation, we employ the Voronoi covariance measure
(VCM) [45], to detect the edge points of a point cloud. Once
the simplification rate for edge points is larger than the rate
for ordinary points, the edges in a point cloud are revealed in
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Algorithm 1 AIVS-Based Isotropic and Flexible Simplifica-
tion

TABLE I

GEOMETRIC MAXIMUM & AVERAGE ERRORS AND TIME COST WITH

DIFFERENT VALUES OF ϕ . (10,000 SIMPLIFICATION POINTS)

visualization. We show an instance of sharp-feature keeping
using the proposed AIVS-based flexible scheme in Figure 14.

In summary, AIVS-based simplification provides a general
and efficient framework for isotropic simplification and flexi-
ble simplification. We summarize the proposed simplification
framework in Algorithm 1.

V. EXPERIMENTS

In this section, we carry out extensive experiments to
evaluate the efficiency, robustness and complexity of the
proposed method. The test point cloud datasets are selected
from Stanford [46], SHREC [47], and RGB-D scene [48]
models. We implemented the proposed method in C++ with
Visual Studio 2019 (64 bit). The experiments were carried out
on a PC equipped with a 3.6 GHz Intel Xeon W2133 processor
and 32 GB of RAM, and with Windows 10 as its operating
system. Firstly, we evaluate the influence of voxelization for

Fig. 14. An instance of sharp-feature keeping using the proposed AIVS-based
flexible simplification scheme.

TABLE II

DENSITY ERRORS OF DIFFERENT SIMPLIFICATION METHODS ON THE

STANFORD MODELS (10,000 SIMPLIFICATION POINTS)

TABLE III

DENSITY ERRORS OF DIFFERENT SIMPLIFICATION METHODS ON THE
STANFORD MODELS (0.1 SIMPLIFICATION RATE)

our method by the geometric maximum & average error [15],
[49]. Secondly, we estimate the quality of simplification results
from different simplification methods based on the geometric
maximum & average and density error analysis. Next, we show
the flexible simplification results based on AIVS. Then we
evaluate the robustness of our method on different kinds of
point clouds, including noisy and multi-objects point clouds.
Finally, we provide a further analysis for different methods,
including time cost report and evaluation of intrinsic control
of point distance.

A. Voxelization

According to the discussion in Sec. IV-A, the density
of voxelization could have an influence on the quality of
simplification. Let’s consider two extreme cases: 1. there is
only one voxel box for AIVS, and all points of the input point
cloud are assigned to the box; 2. the size of voxel box is too
small and each voxel box contains no more than one point.
For the first case, the simplification algorithm degenerates to
the global FPS simplification and the intrinsic control of point
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Fig. 15. Comparison of the simplification results obtained with different methods (10,000 simplification points from the Armadillo model and Buddha model).

distance is disable. For the second case, we are unable to
perform simplification in each voxel box independently. The
point number of simplification in each voxel box is equal
to zero. Therefore, the selection of voxelization scale should
avoid the two cases.

Actually, it is difficult to find a golden rule that can be used
for voxel box size selection in point cloud simplification. The
reason is that the point distributions of different point clouds
vary greatly. In our implementation, we roughly estimate the
voxel box size of a point cloud as follows. For a given point
cloud, we first find its rectangular bounding box and define
the long axis of the box as the standard axis. Let l be the
length of the standard axis, the size of a voxel box is l/ϕ
if we equally divide the axis into ϕ intervals. In Table I,
the geometric maximum & average error and time cost are
shown for simplification with different values of ϕ (some
results with extremely value of ϕ are removed). By analyzing
the results in Table I, we found that we are able to achieve
the aforementioned balance if ϕ is estimated by

ϕ =
[ 3

√|P|
2

]
, (14)

where |P| is the point number of an original point cloud. The
square brackets mean taking the integral multiple of 10.

B. Evaluation of AIVS-Based Isotropic Simplification

To further illustrate the performance of our simplification
method, we compare the simplification results from different
methods based on geometric maximum & average and density
error analysis. The density error analysis is used to estimate the
isotropic property of different simplification results. We orga-
nize the points of the simplified point cloud into a kd-tree
structure and find the k-nearest neighbour point set K (pi ) for
each point pi (k is set to 8 in our implementation). Let di be
the average distance between pi and the points in K (pi), then
the density error �den can be computed as

�den = max{di} − min{di}, (15)

and

di =
∑

p j ∈K (pi )

d(pi , p j )/k. (16)

We compare the proposed method with several classical peer
ones in the literature, including MLS error optimization [8],
Hierarchical simplification [13], Wlop [14], and Laplace
graph [3]. The Hierarchical simplification and Wlop were
implemented by Computational Geometry Algorithms Library
(CGAL). The Hierarchical simplification cannot always output
a simplified point cloud with user-specified point number.
For fair comparison, we manually adjust its parameters to
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Fig. 16. Curvature-sensitive sampling based on AIVS. From left to right:
original point cloud models; isotropic simplification results with 10,000 points;
curvature-sensitive sampling with 10,000 points by C1 configuration {2, 3, 4,
5, 6}; curvature-sensitive sampling with 10,000 points by C2 configuration
{1, 2, 3, 4, 5}.

control the point number in simplification result. The MLS
error optimization and Laplace graph were implemented in our
soft platform. The quadratic optimization task of the Laplace
graph is solved by MOSEK, which is an efficient optimization
library. In Figure 15, we compare the simplification results
of different methods. As can be observed from the figure,
the simplified point clouds obtained with our method are more
evenly distributed compared to peer ones.

To further prove the effectiveness of the proposed frame-
work, we show the quantitative comparison of different sim-
plification methods in Tables II - V. Some experimental results
with excessive time cost (more than two hours) are removed.
The density error results of different methods are shown
in Tables II and III. From these two tables, we can see that
our simplification method achieves better performance in terms
of density optimization. In Tables IV and V, we show the
geometric maximum & average errors of different methods.
The results verify that our method has better MLS surface
fitting performance than peer methods.

C. Evaluation of AIVS-Based Flexible Simplification

In Sec. IV-C, we have introduced that the different kinds
of flexible simplifications can be realized by AIVS-based
flexible simplification scheme. In this part, we evaluate the
efficiency of different flexible simplification schemes, includ-
ing curvature-sensitive sampling, sharp-feature keeping sim-
plification, and axis-based flexible simplification.

Fig. 17. 3D objects (fandisk, blade and church) with sharp-features.

Fig. 18. Sharp-feature keeping simplification (5,000 points) with different
configurations based on AIVS. Configuration: left {1, 9} and right {3, 7}.

For the curvature-sensitive sampling, the category num-
ber c in Equation 13 has a great impact on point cloud
simplification. This is because if c is too large, the points
in each class are insufficient for local simplification in a
voxel box; else if c is too small, the density changes of
the adjacent point sets with different curvature values are
not continuous and smooth. In our implementation, we set
c to 5, and thus have 5 curvature ranges: c1 ∈ [0, π/10),
c2 ∈ [π/10, π/5), c3 ∈ [π/5, 3π/10), c4 ∈ [3π/10, π/3),
c5 ∈ [π/3, π/2]. Then, the points of the input point cloud
are classified into different categories according to the ranges.
A configuration C is defined by a set of ratios {ai} for {ci}.
In Figure 16, we show the curvature-sensitive sampling results
with different configurations. It shows that the AIVS can
achieve different kinds of curvature-sensitive sampling results
with user-specified configurations.

For simplification with sharp-feature keeping, the goal is
to keep the sharp edges of a point cloud for visualization
and geometric feature-based analysis. In Figure 17, we show
three 3D objects with sharp features. The implementation of
the simplification based on AIVS is similar to curvature-
sensitive sampling. The difference is that the point clas-
sification is based on the sharp feature. The sharp-feature
keeping simplification results obtained with different con-
figurations are shown in Figure 18. The sharp edges are
more clear by the configuration with a higher ratio for edge
points.

To evaluate the efficiency of the proposed sharp-feature
keeping simplification scheme, we compare it with several
peer simplification methods. In [14] and [23], the authors
discussed that the Wlop simplification is a balanced scheme
for uniform sampling and sharp-feature keeping. The Laplace
graph-based simplification [3] increases the weights of the
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TABLE IV

GEOMETRIC MAXIMUM & AVERAGE ERRORS OF DIFFERENT METHODS ON THE STANFORD MODELS (10,000 SIMPLIFICATION POINTS)

TABLE V

GEOMETRIC MAXIMUM & AVERAGE ERRORS OF DIFFERENT METHODS ON THE STANFORD MODELS (0.1 SIMPLIFICATION RATE)

Fig. 19. Comparisons of sharp-feature keeping simplification for fandisk, blade and church with different simplification points (5,000 and 10,000).

points in the sharp edge by reducing the balance parameter
λ. We set λ to 0.2 to increase the weight of sharp-feature
sensitivity. To control the parameters (max cluster size and
surface variation) of the Hierarchical simplification, a sharp-
feature sensitive simplification result is achieved. In Figure 19,
we compare the sharp-feature keeping simplification results
obtained with different methods. The configuration for AIVS
is {1, 9} (a1 of ordinary point set is set to 1 and a2
of edge point set is set to 9). The results show that the
AIVS-based simplification achieves a better balance between
locally uniform sampling and sharp-feature keeping. Even the
simplification point number is small, the sharp-feature also can
be maintained by our method.

In fact, AIVS provides a high degree of freedom for the
flexible simplification design to meet users’ demands. For

instance, a point cloud-based application requires a flexible
simplification which should satisfy the perspective principle
i.e., points that are near to the eyes appear more dense than
those that are far away. Using the proposed AIVS-based
flexible simplification, such requirements can be fulfilled.
We provide an axis-based flexible simplification to demon-
strate the function. Given a point cloud, we classify its points
into different classes according to their Y -coordinates. The
category number c is also set to 5, as did in curvature-
sensitive sampling. Let Ymax and Ymin be the maximum and
minimum value of the Y -coordinates of all points, respectively,
and Yd (Yd = Ymax − Ymin ) be the range of Y -coordinates,
we define the ranges of the five classes as: c1 ∈ [Ymin , Ymin +
0.2Yd), c2 ∈ [Ymin + 0.2Yd , Ymin + 0.4Yd), c3 ∈ [Ymin +
0.4Yd , Ymin + 0.6Yd), c4 ∈ [Ymin + 0.6Yd , Ymin + 0.8Yd),
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Fig. 20. Instances of axis-based flexible simplification. The configurations
from left to right: C1{1, 2, 3, 4, 5}; C2{2, 3, 4, 5, 6}; C3{6, 5, 4, 3, 2};
C4{5, 4, 3, 2, 1}.

Fig. 21. Two denoising examples obtained with the proposed pre-processing
scheme.

c5 ∈ [Ymin + 0.8Yd , Ymax ]. Using a configuration C with a
set of ratio ai , an axis-based flexible simplification result is
achieved based on AIVS. In Figure 20, we show the instances
of such simplification results with different configurations.
The results simulate a perspective effect just like a realistic
illumination in a point cloud.

D. Evaluation of the Robustness

In this part, we evaluate the robustness of different methods
on noisy and multi-objects point clouds. As aforementioned,
the pre-processing of our method improves the quality of
input point clouds. We collect a test set from SHREC models
with Gaussian noise to conduct the experiment. In Figure 21,
we compare the point cloud models with noise and the corre-
sponding denoising results. It is clear that the pre-processing
recovers the MLS surfaces from noisy point clouds. To quan-
tify such improvement, we compare the proposed method
with Wlop [14] and SampleNet [36] in terms of geometric
average error (�Avg). The results are illustrated in Figure 22,
from which we can see that the geometric average error of
the proposed method is significantly lower than that of peer

Fig. 22. Geometric average error (�Avg) comparison of different sim-
plification methods with/without the pre-processing. It is clear that the
pre-processing improves the quality of simplification for different methods.
With the pre-processing, our method achieves better geometric consistency.

Fig. 23. Instances of multi-objects point clouds simplification results obtained
with different methods. The simplified points are highlighted in yellow.

TABLE VI

TIME COST OF DIFFERENT METHODS IN SECONDS (10,000 SIMPLIFICA-
TION POINTS)

methods, and this proves that our method is more robust to
noisy point clouds and keeps better geometric consistency.

In previous experiments, the test point clouds are single-
object models. To further demonstrate the effectiveness of our
method, we collect another test dataset from RGB-D scene
models. In this dataset, point clouds are mainly multi-objects
models like indoor scenes. We show some instances of simpli-
fication results and the geometric average errors of different
methods in Figures 23 and 24, respectively. The SampleNet
samples a critical point set as the simplification result. How-
ever, the SampleNet breaks the MLS surface of the original
point cloud. The Wlop achieves the simplification result with
non-uniform density. Compared to the above methods, our
simplification method achieves better balance between uniform
density and geometric consistency.
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TABLE VII

TIME COST OF DIFFERENT METHODS IN SECONDS (0.1 SIMPLIFICATION
RATE)

Fig. 24. Geometric average error (�Avg) comparison of different methods
with two simplification point numbers: 10,000 (red) and 20,000 (blue).

Fig. 25. Running time comparison of different simplification methods. A and
B show the time cost in the setting of 10,000 simplification points and a
simplification rate of 0.1, respectively. The x-axis of A and B represents the
number of points of an original point cloud, and the y-axis is the time cost
(in seconds).

E. Further Analysis of AIVS-Based Simplification

The time complexity of AIVS without parallel computation
is O(nmlog(m)), where n is the voxel box number, and m is
the average point number in each voxel box. For each voxel
box, the simplification time complexity can be regarded as the
local FPS, which is equal to sort a set of points based on point
distances. Using the parallel computation, the time complexity
of AIVS can be reduced to O(8mlog(m)). The neighborhood
size is 8 for each voxel, which means the number of parallel
computation steps is 8. In our framework, we use the OpenMP
to implement the parallel computation. In Table VI and VII,
we compare the computation time of different methods on
different point clouds. The running time comparison of the
methods is shown in Figure 25.

Fig. 26. Instances of reconstructed meshes. Left: reconstructed mesh from
CVT resampling result; Right: reconstructed mesh from our simplification
result.

Fig. 27. Instances of reconstructed meshes with inner borders. From left
to right: Ground truth; CVT reconstruction result; Our reconstruction result.
Benefited from intrinsic control, the inner borders can be reconstructed from
our simplification result, which improves the accuracy of reconstruction and
keeps better geometric consistency.

Benefited from the intrinsic control of point distance, our
simplification achieves better neighbor structure for a point
cloud, especially for the region with sharp curvature changes.
Using the accurate neighbor structure, our simplification keeps
better geometric consistency between simplification result and
original point cloud. To evaluate the effectiveness of intrinsic
control of point distance, we use a reconstruction method [50]
to rebuild the mesh based on CVT [27] and our simplification
result. The comparison is shown in Figure 26. It is clear that
our simplification improves the accuracy of the reconstructed
mesh in the region with sharp curvature changes. As our
method achieves more accurate neighbor structure, some incor-
rect connection between points can be avoided. The inner
borders can be reconstructed by such property. In Figure 27,
we show the inner border reconstruction results. Our method
reconstructs better inner borders.

In summary, our simplification method is proved to have
better performance both in accuracy, flexibility and time
consumption. Based on the local structure of AIVS, the sim-
plification task can be processed without global analysis. The
intrinsic and isotropic properties can be maintained during the
local FPS sampling in each voxel box. The proposed method
is capable of simplifying a given point cloud as specified
by a user. In addition, it provides a flexible scheme to meet
the diverse needs of simplification such as curvature-sensitive
sampling, sharp feature keeping and axis-based flexible simpli-
fication. The time cost can be reduced by the parallel structure
of AIVS.
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VI. CONCLUSION

We have proposed a point cloud simplification method based
on Approximate Intrinsic Voxel Structure (AIVS). The AIVS
divides the simplification task with voxel boxes. It provides the
intrinsic control of point distance in an efficient way, which
improves the accuracy of geometric consistency. Benefited
from the local FPS and the intrinsic control of point dis-
tance, the AIVS-based isotropic simplification achieves global
uniform simplification without complex optimization. Accord-
ing to different point categories with different simplification
rates, a flexible simplification scheme has also been designed
based on specifications whenever necessary. Different flexible
simplification sub-tasks can be processed, including curvature-
sensitive sampling, sharp-feature keeping, and axis-based flex-
ible simplification. At the same time, the flexible simplification
scheme keeps the balance between such task requirements
(curvature sensitive, sharp-feature keeping, etc) and locally
uniform point density. The proposed solution also allows
parallel computation to be used to improve the simplification
efficiency.
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