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Abstract
Research regarding the similarity measurements of 3D craniofacial models (including 3D skull and face models) is an
important research direction in fields such as archaeology, forensic science, and anthropology and represents a meaningful
and challenging task. Its major challenges are the fact that 3D skulls are geometric models with multiple holes and complex
topologies, there are facial expression changes on the 3D faces. Therefore, the general 3D shape similarity measurements,
which are sensitive to boundaries and expression changes, make it impossible to simultaneously measure skull and face
similarity. In this paper, we define a 3D signature to describe the pure intrinsic structure and distinguish the similar basic shape
and complex topology of 3D skulls and faces: the harmonic wave kernel signature (HWKS). The HWKS is a point descriptor
involving the Laplace–Beltrami operator, which is able to effectively extract geometrical and topological information from
3D skulls and faces. Based on the HWKS, we provide an effective pipeline for 3D skull and face similarity measurement
by calculating the cosine distance between the HWKS values of 3D skulls and faces. By making comparisons with the
wave kernel signature, the HWKS simultaneously describes both local and global properties of a shape. Results from a
number of experiments have already shown that our framework is suitable for both measure 3D skull similarity and face
similarity, and more importantly, measuring skull similarity and face similarity are two independent processes although using
the same framework. By using the same measurement method for 3D skull similarity and face similarity, we observe an
effective craniofacial relationship under unified metrics: The change rate of skull similarity is generally consistent with the
corresponding face similarity, indicating the correlation between the shape of the 3D skull and its corresponding 3D face shape.
And our experimental results show the rationality and effectiveness of this method, which refers to the previous researchers
measure the similarity of the reconstructed face from the original skull to reflect the similarity of the original skull.

Keywords Laplace–Beltrami operator · Harmonic wave kernel signature · 3D skull similarity · 3D face similarity

B Xingce Wang
wangxingce@bnu.edu.cn

Dan Zhang
danz@mail.bnu.edu.cn

Zhongke Wu
zwu@bnu.edu.cn

Chenlei Lv
chenleilv@mail.bnu.edu.cn

Na Liu
lna@mail.bnu.edu.cn

1 School of Artificial Intelligence, Beijing Normal University,
Beijing, China

2 Engineering Research Center of Virtual Reality and
Applications, Ministry of Education,Beijing Key Laboratory
of Digital Preservation and Virtual Reality for Cultural
Heritage, Beijing Normal University, Beijing 100875, China

1 Introduction

With the development of computer graphics and biological
computing, a large number of studies on 3D craniofacial
models have emerged (including 3D skull and face models)
[1–3]. Compared to another biological characteristic (e.g.,
DNA, fingerprints), the 3D skull is a stable biological prop-
erty and is resistant to fire, high humidity, and temperature
changes; the 3D face is readily distinguished by the vision
system of human beings. A skull is an intrinsic feature of
its corresponding face, and studies on it can be applied to
skull identification [4,5], craniofacial reconstruction [6] and
virtual surgical planning [7,8]. A core technique involved in
all of those studies is to measure the 3D craniofacial sim-
ilarity. This technique is used to, for example, determine
the similarity interval for skull identification or craniofa-
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cial reconstruction evaluation. In this paper, we propose a
similarity measure framework for 3D craniofacial models,
including the similarity of 3D skull to skull and the sim-
ilarity of 3D face to face based on a geometric method.
And we measure the 3D skull and face models under a
unified metric to eliminate errors caused by different met-
rics.

1.1 Related works

3D craniofacial similarity measurement includes 3D face
similarity and 3D skull similarity. 3D face similarity mea-
surements have been extensively studied for many years
[9–15], including with respect to the global 3D face and
based on the local 3D face geometric features. Lei et al. [10]
extracted a face descriptor from a 3D face surface called
angular radial signature (ARS) and measured 3D face simi-
larity by using kernel principal component analysis (KPCA)
and support vector machine (SVM). Emambakhsh et al. [11]
proposed a novel five-step algorithm based on the nasal
region for robust 3D face expression recognition. Hou et al.
[12] formulated a metric learning method and constructed a
decision function by incorporatingMahalanobis distance and
bilinear similarity for face verification. Unfortunately, the 3D
face similarity method is not suitable for 3D skulls, and few
studies have ever been conducted on 3D skull similarity. This
lack of research is partly attributed to the more demanding
nature of acquiring and processing 3D skulls. Another reason
lies in themore intricate topology of 3D skulls comparedwith
that of 3D faces. Figure 1 shows the topological structure of
a 3D skull.

Jin et al. [16] proposed a measurement method based on
resampling and discrete Fourier transform (DFT) of con-
tour pixels. Mendonca et al. [17] compared the accuracy of
anthropometric measurements obtained by calipers versus
two methods of 3D digital skull model. Pei et al. [18] inves-
tigated the unsupervised 3D skull similarity analysis by a
random-forest-basedmetric. Some previous worksmeasured
the 3D skull similaritymeasurements through its correspond-
ing reconstructed 3D face similarity measurements [19–21].
The consistency is observed between the similarity of the cor-
responding reconstructed face and that of the skull, yet this
result relies on the craniofacial reconstruction method. Over-
all, the above methods cannot directly measure the similarity
between 3D skulls, which leads to imprecise results.

Feature extraction of 3D skull and face models is the most
important aspect in directly measuring skull similarity and
face similarity. To extract the features of 3D skulls and faces,
some works used statistical model methods [22–25]. Berar
et al. [26] first applied statistical shape model (SSM) to cran-
iofacial research, SSM is a shape analysis method that uses
landmark points to represent shape models and uses statisti-
cal model to represent the transformation of shape models.

And Claes et al. [27] improved SSM by using principal com-
ponent analysis (PCA). Duan et al. [24] proposed a skull
identification method using PCA to match an unknown skull
with 3D faces in database, in which the relationship of the
3D skull and face is obtained by using canonical correlation
analysis(CCA). Shui et al. [25] analyzed how the selection of
principal components (PCS) affected the analysis of cranio-
facial relationship and sexual dimorphism. Most researchers
studied 3D skulls and faces with point cloud data, which
do not include geometric information of 3D skull and face
models. Meanwhile, after the reduction in dimensionality by
PCA, the data cannot contain all the information on the skull
and face models.

The multi-boundary 3D skull and the 3D facial expres-
sions are relatively difficult to process, especially in terms
of the similarity problem. In recent years, research has
suggested that expression variation can be modeled as iso-
metric or approximate isometric transformations [28–30].
Therefore, we consider extracting intrinsic characteristics
of 3D skull and face models based on the spectral shape
descriptors. Spectral shape descriptors are derived from
the eigenvalues λi and eigenfunctions φi of the Laplace–
Beltrami operator (LBO) to compute local shape descriptors
[31].

The global point signature (GPS) is a global spectral
shape descriptor, which maps 3D shapes into an infinite-
dimensional space called global point signature embedding
dominant [32,33]. Assume a heat source μ0(x) on a mani-
fold; the heat kernel signature (HKS) was proposed by Sun
et al. [34]: HK St(x, y) defines the heat transferred from
point x to point y at time t . HK St(x, x) is the amount of
heat retained at point x after time t . However, the above
spectral shape descriptors use low-pass filters, whichmay fil-
ter out the high-frequency information of shapes. The wave
kernel signature (WKS) [35] was proposed by using a band-
pass filter to clearly separate different sets of frequencies of
shapes and the WKS allows access to high-frequency infor-
mation and is independent of time parameters compared to
the HKS.

1.2 Contribution

The problem of simultaneously measuring 3D skull similar-
ity and face similarity by a single method remains difficult.
In this paper, we propose an advanced method for exploiting
intrinsic information of shapes tomeasure 3D skull similarity
and face similarity under a unified standard of measurement.
In this paper, we define a novel descriptor that inherits the
advantages of the WKS and can distinguish the different
shape models form the same shape class. Our method pays
more attention to the description of shape details, so it can
better reflect the differences of different shapes in the same
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Fig. 1 Different views on the
topological structure of a 3D
skull (to be more specific, unlike
3D human face models with a
single outer boundary, 3D skulls
contain orifices with varied sizes
in the regions of eyes, nose,
ears, and cheeks, thus rendering
the models as multiboundary
surfaces.)

class of shape than other methods. The contributions of our
study are as follows:

– We propose a novel shape descriptor HWKS, which
effectively balances the multi-scale characteristics of the
WKS and describes the local and global properties of
3D skull and face at the same time. The HWKS can
not only distinguish the similar basic shapes and com-
plex topological structures of 3D skull models but also
is robust to approximate isometric transformation of 3D
facial expression;

– We propose a pipeline that can directly and efficiently
measure 3D skull similarity and face similarity which
is not affected by 3D coordinates. This pipeline does not
require to pre-fill holes in the skullmodels, and it is robust
to facial expression changes, and the needs of researchers
to calculate arbitrary craniofacial similarity are satisfied
by the same measurement method;

– We validate the effectiveness of our proposed method
with two different experimental strategies based on the
Asian Mongolian craniofacial database. More impor-
tantly, our experimental results show the validity and
rationality of the fact that 3D skull similarity can be
presented by its corresponding or reconstructed face sim-
ilarity, which has not been studied in details in previous
works [19–21] but is significant.

The remaining parts of the paper are organized as follows.
In Sect. 2, we illustrate the fundamentals and pipeline of our
proposed method. In Sect. 3, we provide the harmonic wave
kernel signature in detail and construct a similarity measure-
ment for 3D skulls and faces. In Sect. 4, we demonstrate
our methods on the Asian Mongolian craniofacial database
for experiments and analyze the craniofacial relationship.
Finally, we draw conclusions regarding our study in Sect. 5.

2 Fundamentals and pipeline

In this section, we remain within the Riemannian geometric
framework and introduce the pipeline of 3D skull similar-
ity measurement and 3D face similarity measurement. Our
method is basedon theLaplace–Beltrami operator (LBO) and

the eigenfunction and eigenvalue of the LBO can be defined
as different spectral shape descriptors. By calculating the dis-
tances between spectral shape descriptors defined on shapes,
we obtain 3D skull similarity and 3D face similarity. In this
section, the definition and the discrete calculation of the LBO
are first given; then the ZoomOut shape correspondence [36]
is introduced for finding the efficient correspondence points
of a pair of shapes; the general framework for 3D skull sim-
ilarity measurement and 3D face similarity measurement is
ultimately shown.

2.1 Laplace–Beltrami operator

Consider a shape as a two-dimensional smooth compactman-
ifold M equipped with a Riemannian metric g, possibly with
a boundary. On the surface of manifold M , we define a novel
shape descriptor, which is in turn closely connected with
the notion of the LBO. Let f be a C2 real-valued function,
defined on manifold M . The LBO is a differential operator
defined by the divergence of the gradient of f as follows:

Δ f = ∇ · ∇ f = ∇2 f = ∂2 f

∂x2
+ ∂2 f

∂ y2
+ ∂2 f

∂z2
(1)

Explicitly, the LBO of a function f in local coordinates
obtained by equipping with a Riemannian metric d can be
expressed as follows [37]:

Δ f = ∇ · ∇ f = 1√
G

n∑

i, j=1

gi j
∂

∂xi

(√
Ggi j

∂ f

∂x j

)
(2)

In the above equation, g is a metric tensor defined on the
surface of Riemannian manifold M , gi j is the inverse metric
tensor, and G is the determinant of the matrix gi j . Since the
LBO is self-adjoint and semipositive definite, the LBO on M
is decomposed into the matrix product of the eigenvalue and
eigenfunction:

ΔMφi = λiφi (3)

whereφi is the i th eigenfunction, corresponding to the eigen-
valueλi .WhenM is a connectedmanifoldwithout boundary,
the first eigenvalue is 0, with the corresponding constant
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Fig. 2 The triangular surface sketch of a vertex vi

eigenfunction, and the smallest nonzero eigenvalue is λ1.
We can order the eigenvalues as: 0 = λ0 < λ1 ≤ λ2 ≤
λ3 ≤ · · · , where the set of corresponding eigenfunctions
is: φ1, φ2, φ3, . . ., and each vertex has a different eigenfunc-
tion. In this paper, we consider shapes represented as triangle
meshes in the discrete setting. The discrete LBO at the vertex
vi of the triangle mesh can be defined as follows:

Δ f (vi ) = 1

2

∑

v j∈Nei(vi )

(cotαi j + cotβi j )| f (v j )− f (vi )| (4)

where vi is the i th vertex on the trianglemeshmodel, Nei(vi )
is the adjacent vertex set of vi , αi j and βi j are angles on two
sides of the edge connecting vi and v j , as shown in Fig. 2.

2.2 Functional maps and ZoomOut

It is necessary to find a point-to-point correspondence of a
pair of shapes in advance before measuring the similarity.
Recently, functional maps [38] have exhibited performance
in finding the corresponding points between a pair of 3D
shapes. The main idea of functional maps is to identify cor-
respondences between a pair of manifolds M and N by
a point-wise map: T : L2(M) → L2(N ), L2 is Hilbert
space composed of inner product of finite points. The map T
induces a linear functional correspondence: TF( f ) = g and
g = f ◦ T−1 where f : M → R and g : N → R. Suppose
that f : M → R can be represented as a linear combination
of basis functions f = ∑

i
aiφM

i in the function space of M

equipped with a basis. Then, TF( f ) is defined as follows:

TF( f ) = TF

(
∑

i

aiφ
M
i

)
=

∑

i

ai TF
(
φM
i

)
(5)

In addition, if suppose that g : N → R can be represented
as a linear combination of basis functions g = ∑

i biφ
N
i in

the function space of N and ci j is a possibly infinite matrix

of real coefficients, Eq. 5 is expressed as follows:

TF( f ) =
∑

j

∑

i

ai ci jφ
N
j (6)

where ci j is independent of f and is completely determined
by the bases and map T . Ovsjanikov et al. [38] used the first
n eigenfunctions of LBO as the bases for their functional
representations(n=100, independent of the number of points
on the shape). For a fixed choice of basis function φM , φN ,
ci j is a matrix of real coefficient.

Therefore, let f be represented as a vector of coefficients
a = (a0, a1, . . . , ai , . . .) and g is represented as a vector
of coefficients b = (b0, b1, . . . , bi , . . .), where a functional
map TF is a matrix C : b = Ca. The optimal solution C is
obtained by solving linear equations constructed by function
preservation contradictions, including descriptor preserva-
tion, landmark correspondence and segment correspondence.
Descriptor preservation describes the geometry characteris-
tics of any point on the shape (such asHKS,WKS); landmark
correspondence is to encode the distance function of the land-
mark points or the normal distribution function around the
landmark points as a functional constraint; segment corre-
spondence is to establish the correspondence of the indicator
functions on the segments of all segments of a pair of shapes
as functional constraints [38]. After obtaining the C , the
point-wise correspondence between a pair of shapes was
found [38] bymultiple iterations using the least squares algo-
rithm.

Based on the method of functional maps, Simone Melzi
et al. proposed a very simple and efficient map refine-
ment method called “ZoomOut” for rapidly determining
shape correspondences by iterative up-sampling in the spec-
tral domain[36]. When given an input kM ∗ kN functional
map C0, they extend it to a new map C1 of (kM + 1) ∗
(kN + 1) without other information, and then they iterate
this procedure to obtain progressively larger functional maps
C0,C1,C2, . . . ,Cn until some sufficiently large n. The key
parameter for the initialization is the size of the functional
maps, which is set as kM = kN = 4 in most settings.

In our paper, we obtain the initial corresponding point
set(CPS) between a pair of 3D shapes using the ZoomOut,
as shown in Fig. 3. Then, we can measure the 3D skull simi-
larity and face similarity by calculating the distance between
descriptors defined on the shapes CPS.

2.3 Pipeline

In this paper, we propose a general pipeline for 3D skull
similarity and 3D face similarity measurements. Figure 4
schematically describes the generic framework for 3D skull
similarity and 3D face similarity measurement based on the
HKWS. Importantly, both skull similarity measurement and
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Fig. 3 Finding the
correspondence point set of a
pair of 3D skulls (a) and a pair
of 3D faces (b) using ZoomOut,
the color coding represents the
correspondence points

face similarity measurement can be implemented separately
according to task requirements, not necessarily simultane-
ously.

The specific five steps of the pipeline are as follows:

A. Input 3D models The first step is to input a pair of 3D
skulls or faces. This paper deals with triangle mesh mod-
els including the effective geometric information and
topology;

B. Calculate the LBO Given a pair of 3D skulls or faces, a
real-valued function f is defined.We calculate the eigen-
values λi and eigenfunctions φi of the LBO of 3D skulls
or shapes;

C. Obtain the CPS Based on the eigenvalues λi and eigen-
functions φi , we use the ZoomOut to obtain the CPS of
a pair of 3D skulls or faces;

D. Calculate the HWKS We calculate the HKWS of 3D
skulls or faces by choosing two efficient energy levels
and select the HWKS values of the skulls CPS or faces
CPS;

E. Output similarity results Based on the HWKS values of
CPS, we define a similarity measurement by using the
cosine distancewhich satisfies non-negativity, nullity and
symmetry.

3 Harmonic wave kernel signature and 3D
skull similarity measurement

In this section, we propose a method to construct the HWKS
that provides an optimal trade-off between discernment and
invariance and analyze the invariance of the HWKS. Last,

we define a general measurement for calculating 3D skull
similarity and 3D face similarity using the cosine distance.

3.1 The wave kernel signature

The WKS is introduced by Aubry et al. [35], which can be
naturally interpreted in the framework of quantummechanics
as the average probability of finding a particle with a given
energy distribution fE at a specific point x ∈ M :

∂φ

∂t
(x, t) = iΔφ(x, t) (7)

φ(x, t) is thewave functionwhich expresses the energy oscil-
lation, where Δ is the LBO and i is imaginary unit; the
product of the LBO and i ensures that the energy will not
decay after oscillating at different frequencies. When t is 0,
the expectation of φ(x, t) is the approximate energy E . The
author choose the eigenvalues λk of the LBO defined on the
surface of the shape as the distribution parameter of energy
distribution fE, while the energy is directly related to the
eigenvalues λk of the LBO [35]. When t = 0, the fE(λk)

denotes the energy distribution of the particle with parame-
ter λk , and the wave function φ(x, t) of the particle is given
by the following:

φ(x, t) =
∞∑

k=0

eiλk tφk(x) fE(λk) (8)

The probability of measuring the particles at point x
is |φ(x, t)|2. Since the probability distribution is time-
independent, the WKS is defined as the average probability
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Fig. 4 The pipeline of 3D skull
similarity measurement and 3D
face similarity measurement

of measuring a particle in x :

WK S(x, E) = lim
T→∞

1

T

T∫

0

|φ(x, t)|2 (9)

The functions of eiλk t are orthogonal for the L2 norm:

WK S(x, E) =
∞∑

k=0

φ2
k (x) fE(λk) (10)

Because the energy probability distribution f 2E follows a
log-normal distribution with parameter σ , the author of the
WKS defined the WKS at a point x ∈ M as a real valued
function in the logarithmic energy scale eN = log(E) [35].
When · represents the dot product and WK S(x, ·) describes
the binary operation of point x on R, the wave function
WK S(x, eN ) of the particle at a point x ∈ M is given by
the following:

⎧
⎨

⎩

WK S(x, ·) : R → R;
WK S(x, eN ) = Ce

∑
k

φ2
k (x)e

−(eN−log λk )2

2σ2
(11)

where Ce = (
∑

k e
−(eN−log λk )2

2σ2 )−1 is the regularized WKS
function. In this function, the time parameter has been
replaced by the energy, which is directly related to the eigen-
values of the LBO.

3.2 Harmonic wave kernel signature

In [35], the author computed thefirstM = 300 eigenvalues of
theLBOand evaluated theWKSat N = 100 values eN which
make up different energy levels to describe the global or local
shape features; they used emin = log(λ1)+2σ , the logarithm
of the smallest nonzero eigenvalue and emax = log(λM )−2σ .
With the linear increment q = (emax − emin)/N and the

variance was set to σ = 7q, we can obtain the following:

emin = N+2q
N+4q log(λ1) + 2q

N+4q log(λM )

emax = 2q
N+4q log(λ1) + N+2q

N+4q log(λM )

diff = N
(N−1)(N+4q)

(log(λM ) − log(λ1)
en = emin + (n − 1) ∗ diff

(12)

The WKS is a stable and highly informative descriptor, it
has multi-scale characteristics by selecting different energy
levels.

⎡

⎢⎢⎣

WK S(x1, e1),WK S(x1, e2), . . . ,WK S(x1, eN )

WK S(x2, e1),WK S(x2, e2), . . . ,WK S(x2, eN )

. . . . . .

WK S(xn, e1),WK S(xn, e2), . . . ,WK S(xn, eN )

⎤

⎥⎥⎦ (13)

Equation (13) shows the WKS matrix of M at N energy lev-
els, where n is the number of points on M andWK S(xn, eN )

represents the WKS of the vertices xn at the energy level eN ,
and each column represents the WKS of each point at differ-
ent energy levels.

Figure 5 shows the WKS values at different energy levels
of a 3D skull and a 3D face. We hope to obtain the largest
possible amount of information about skulls and faces for the
similarity calculation. In this paper, we want to construct a
shape descriptor that can reflect the global and local fea-
tures of shapes at the same time. Based on the synthetic
feature method in machine learning, we propose a novel
shape descriptor called the harmonic wave kernel signature,
which is significantly more discriminative than the WKS,
which functions by simultaneously simulating the processes
of high-energy and low-energy particle oscillation on the
shape surface:

⎧
⎨

⎩

HWKS(x, ·) : R → R;
HWKS(x, eH , eL) = He

WK S(x,eH )
WK S(x,eL)

He = ∑
k
e

(eH−eL)(2 log λk−eH−eL)

2σ2

(14)
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Fig. 5 The WKS values at
different energy levels of a 3D
skull and a 3D face (for WKS, if
the quantum particle with higher
energy level is selected, then the
shorter the wavelength is, the
closer it is to the point on a
shape. In this case, the local
characteristics of the skull or
face are reflected. Conversely,
the quantum particle with lower
energy level reflects the global
characteristics of the skull or
face.)

Fig. 6 Schematic diagram of HWKS values for each vertex (HWKS
expands the difference betweendifferent points and accurately describes
the details of the 3D skull model)

where eL and eH denote low energy and high energy levels,
respectively. He is the regularized HWKS. We purposefully
introduce two different energy levels to balance the global
and local characteristics of shapes, the schematic diagram of
HWKS as shown in Fig. 6 for each vertex.

Combining Eqs. (12) and (14), we can obtain the follow-
ing:

eH − eL = (emin + (H − 1) ∗ di f f )
−(emin + (L − 1) ∗ di f f )
= (H − L) ∗ di f f

(15)

where diff is a constant. To show the highly discriminating
feature of 3D skull and face model, we choose the higher
energy H , in which case the increase in the value of (H − L)

coincideswith the improvement of the result. It is noteworthy
that the value of L cannot be too small if the global property
of the shape is to be maintained. Empirical values are given
as L and H in the experiment.

3.3 Invariance of the harmonic wave kernel
signature

The HWKS inherits the advantages of WKS, rendering it
invariant under different transformations. This invariance is
as follows:

HWKS is intrinsic If we separately calculate the HWKS
before and after the isometric shape change, the theoretical
value of the HWKS remains unchanged: that is, T : X →
Y is an isometric deformation, HWKS(T (x), eH , eL) =
HWKS(x, eH , eL) for all x ∈ M ;

HWKS has topological robustness In many real scenarios,
the shape undergoes not only isometric deformation but also
exhibits “topological noise” . TheWKSuses a bandpass filter
for higher stability, and it is thus characterized by the high
robustness to topological changes. Inheriting this character-
istic, the HWKS is also robust to topological changes.

HWKS is discriminative Indeed, the HWKS is a point sig-
nature over the energy levels of particles that are directly
related to different scales, for which the higher energies
correspond to local geometry whereas smaller energies cor-
respond to properties induced by the global geometry.

3.4 Craniofacial similarity measurement

Because the shapes of different craniofacial models are very
similar, in order to compare the similarities of the same types
of shapes, we normalize the HWKS of craniofacial models.
Normalizing theHWKS can not only improve the calculation
accuracy but also ensure the reliability of the similarity cal-
culation. In our study, we use Z-score normalization, where
μHWKS is the mean HWKS of the craniofacial models and
σHWKS is the standard deviation of the HWKS of craniofa-
cial models, HWKS∗

M denotes the HWKSM of craniofacial
model M after normalization.

HWKS∗
M = HWKSM − μHWKS

σHWKS
(16)

After normalizing the HWKS, we can define the similar-
ity measurement between a pair of skulls or a pair of faces.
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The cosine distance can effectively avoid the differences of
individual degrees, devote more attention to the difference
between the dimensions, and can converge the range of dis-
tance to [0, 2], which can effectively measure the difference
between shapes. In this paper, cosine distance is selected to
construct the similarity calculation index, which measures
the difference between two individuals by calculating the
cosine distance of the angle between two vectors. The closer
the cosine distance is to 0, the closer the direction of the two
vectors is; when the cosine distance is closer to 2, it is indi-
cated that the two vectors have opposite directions. In other
words, the closer the cosine distance is to 0, the more similar
the two shapes are, and vice versa. When the cosine distance
is 0, the two shapes are the same. Based on the CPS results
of a pair of shapes P and Q obtained by using the ZoomOut
which is introduced in Sect. 2.2, we directly calculate the
cosine distance between a pair of shapes CPS as follows.

d(P, Q) = 1 −
∑n

i=1 HWKS∗(xpi )HWKS∗(xqi )√∑n
i=1 HWKS∗(xpi )2

√∑n
i=1 HWKS∗(xqi )2

(17)

where HWKS∗(xpi ) and HWKS∗(xqi ) represent the corre-
sponding point i on shapes P and Q, and n is the number of
points of the P and Q CPS. The d(P, Q) distance satisfies
the following properties:

– Non-negativity d(P, Q) >= 0
– Nullity d(P, Q) = 0 if and only if P = Q
– Symmetry d(P, Q)= d(Q, P)

And to fit the concept of craniofacial similarity (i.e., the
more similar the two craniofacial models are, the larger the
similarity measure is), we define the Dcosine(P, Q) denoting
1/(1+d(P, Q)) to represent the craniofacial similarity mea-
surement range from [1/3, 1]. The larger the Dcosine(P, Q)

values are, the more similar the shape P and Q are. When
P = Q, Dcosine(P, Q) = 1, meaning that P and Q are the
same craniofacial model. More importantly, when the two
craniofacial models are themost dissimilar, Dcosine(P, Q) =
1/3, rather than 0, as a special 3D model, craniofacial model
has certain similarity in shape, so we define the minimum
value of craniofacial similarity as 1/3 to conform to human
subjective judgment.

Dcos ine(P, Q) = 1

1 + d(P, Q)
(18)

4 Experimental results

In this section, we demonstrate the experimental results
obtainedbasedon a craniofacial database.Wedoexperiments
on MATLAB 2015 on 64 bit 32G memory, win10 system.
The time complexity of calculating craniofacial similarity is
O(n2), and n is the number of sampling points on the 3D
craniofacial model. The experiments include five parts: first,
we provide the introduction to the craniofacial database; sec-
ond, we show the effectiveness of the HWKS compared to
GPS, HKS and WKS; third, we conduct the skull similarity
and face similarity measurement on morph data generated
by linear interpolation; fourth, we conduct the skull similar-
ity and face similarity measurement on real data randomly
selected from the craniofacial database; finally, we analyze
the craniofacial relationship and offer the discussion of above
experiments.

4.1 Database

The Asian Mongolian craniofacial database, on which our
experiments are based, consists of data from140volunteers at
Xianyang Hospital, which is located in northwestern China.
The majority of the 140 volunteers, aged from 19 to 75,
belong to the Han ethnic group living in northern China. The
datawere collected in the formofCThead scans, by a clinical
multi-slice CT scan system (Siemens Sensation16). During
the data collection process, the volunteers were supine, with
their hands naturally sagging, their feet close together, and
their head was not tilted. Axial position helical scanning was
used to reconstruct a thickness of 0.75mm.The data collected
for all samples were stored in the form of standard DICOM
3.0 images with an inter-layer slice resolution of 512∗512.
Since the 3D face and skull models used for similarity mea-
surements usually must be complete, the craniofacial models
of the data have been preprocessed. Some of the processes
that they undergone through include model restoration, uni-
fied coordinate system, data standardization, model clipping,
and the elimination of translation and rotation effects. It is
also worth noting that the impacts of data size and posture
have been eliminated by the sufficiently large data scale and
the unified coordinate system shared by the models. Figure 7
shows examples from the craniofacial database.

4.2 Effectiveness of the HWKS

After many experiments, we obtain the empirical values of
the energy parameters for the HWKS. Compared with 3D
face models, the more visually noticeable characteristics of
3Dskullmodels result in relative prominence amongdata: the
thresholds for faces to be properly described are the energy
level H = 80, L = 30, while those values for skulls are
H = 60, L = 10 (for the discussion of the energy param-
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Fig. 7 Examples of male and
female skulls and faces in the
craniofacial database

Fig. 8 Choosing the values of
the energy parameters for
HWKS

eter selection for different genders, please refer to [39]).
The HWKS can simultaneously describe the local and global
properties of the skull and face models, which can be seen
from Fig. 8.

The HWKS can simultaneously represent the local and
global features of 3D skull and face models by introduc-
ing two energy parameters: high energy and low energy. As
its result, the HWKS expands the difference between differ-
ent points as shown in Fig. 6 and accurately describes the
details of the 3D skull and face models and it leads to the
different regions on the surface of 3D craniofacial model can
be clearly separated in Fig. 9. Figure 9 shows the 3D skull
and face describing results generated by using HKS, GPS,
WKS, and HWKS. From Fig. 9, we found that HWKS can
separate more color spots (the same color spot or region rep-
resents the point with similar shape surface value) on the
surface of 3D skull and face model, which means that dif-
ferent regions of 3D skull and face model are displayed. The
HWKS offers superior abilities for feature localization and
distinguish different regions in the model. This difference in
model descriptions corroborates the suitability of the HWKS
in describing 3D skulls and faces.

4.3 Experiments onmorph data

Usually, people cannot intuitively identify skull similarity,
except for experts studying archaeology and forensic science,
who are able to delineate the intricate differences between
different skulls. Through objective deformation operations,
we obtain the actual ground-truth value of similarity mea-
surement, with which we will compare our experimental

results to evaluate the effectiveness of our 3D skull similarity
and face similarity measurement algorithm.We calculate the
similarity between the skull models and morph skull mod-
els through linear interpolations, and the same operation is
performed on the face.

Two 3D craniofacial models, S1 and S2, are randomly
selected from the craniofacial database. Based on the linear
interpolation deformation process between the two models,
the four models in the middle are selected out of all of the S2
models generated from the S1 deformation. We deform the
S1 and S2 (for both male and female), simulating the four
morph models generated from S1 and S2, which are defined
as M1, M2, M3, and M4: Mi = (1− iα)∗ S1 + iα ∗ S2. The
3D craniofacial models of male and female generated from
the S1 and S2 deformation processes are shown in Figs. 10
and 11, respectively.

Linear interpolation deforms the coordinates of the spa-
tial points of the morph model. Therefore, we also use the
Euclidean distance between the coordinates of the spatial
points to define the similarity theoretical value. The calcula-
tion formula is:

similarity(a, b)

= 1

(1 +
√∑num

i=0 ((xai − xbi )2 + (yai − ybi )2 + (zai − zbi )2))

(19)

a and b are selected from S1, S2, M1, M2, M3 and M4, num is
the number of corresponding points set (CPS) of the model,
calculated by ZoomOut, the similarity theoretical values are
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Fig. 9 3D skull and face models
describing results by using
HKS, GPS, WKS and HWKS
(we map the feature values of
each point of 3D skull and face
with different color bar, the
same color spot or regions
represents the point with similar
shape surface value)

Fig. 10 Deformation faces and
skulls of male generated from
male S1 and S2

Fig. 11 Deformation faces and
skulls of female generated from
female S1 and S2
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Fig. 12 Morph skull similarity and face similarity theoretical values
based on Euclidean distance

Fig. 13 Skull similarity results for males and females using HKS

shown in Fig. 12 and the trend of the similarity theoretical
value decreases.

After the deformation process, we calculate the 3D skull
similarity and face similarity with three different methods,
namely HKS and cosine distance, WKS and cosine dis-
tance, and HWKS and cosine distance, whose results are
respectively shown in Figs. 13, 14, and 15. Theoretically, the
similarity between S1 and S2 should exhibit a decreasing
trend.

From Fig. 13, when the HKS is used to describe the 3D
skull and face, the results show that the similarity results are
not consistent with the similarity theoretical values, and the
face similarity does not completely decline. The explana-
tion for such results is that because of the low-pass filter it
applies, the HKS is unable to describe the subtleties between
distinctive skull models.

Fig. 14 Skull similarity results for males and females using WKS

Fig. 15 Skull similarity results for males and females using HWKS

From Fig. 14, when the WKS is applied to describe the
skull and face, the bandpass filter it uses determines that it is
more capable of presenting the differences between skulls
and the differences between faces. The results show that
the trend of similarity results are basically consistent with
the trend of similarity theoretical values. However, since the
WKS can only select one energy parameter for each calcula-
tion, it is almost unlikely to describe both the global and local
properties of the skulls and faces at the same time. Therefore,
skulls and faces cannot be well classified when the WKS is
used as the descriptor to calculate similarity.

From Fig. 15, when using the HWKS, the trends of face
similarity and skull similarity are essentially consistent with
the trend of the similarity theoretical values of males and
females. Simultaneously, the skulls and faces can be clearly
and effectively classified based on the similarity results. The
above results illustrate that the HWKS proposed in this paper
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Fig. 16 Skull similarity and
face similarity results of males

Fig. 17 Skull similarity and
face similarity results of females

demonstrates its effectiveness in representing the local and
global properties of the skulls, as well as its ability to con-
tribute to much more accurate results. In this paper, the
HWKS is used to calculate cosine distance, which is a non
Euclidean feature, while the theoretical value is calculated by
the 3D point coordinates of the craniofacial models, which
is an Euclidean feature. Therefore, the similarity calculated
by the method proposed in this paper is consistent with the
trend of theoretical value of similarity, which can verify the
effectiveness of this method.

Although the results of Figs. 14 and 15 show that the
similarity results ofWKSandHWKSare basically consistent
with the trend of similarity theoretical value, it is obvious that
the similarity curve of skull model and facialmodel in Fig. 15
can be separated compared to Fig. 14. Because the WKS
only can select one energy parameter for each calculation,
it is almost unlikely to describe both the global and local

properties of the skulls and faces at the same time. In contrast,
skulls and faces can be well classified when the HWKS is
used as the descriptor to calculate similarity. All of the above
findings from our experiment demonstrate the limitations of
using the HKS or the WKS in describing 3D skull model
similarities. The unexpected turning points are shown in the
results where the HKS and WKS are used to calculate skull
similarity and face similarity for both males and females.

4.4 Experiments on real data

To further verify that the skull similarity measurement pro-
posed in this paper is effective, we use the face similarity
results to evaluate the skull similarity results. We randomly
select 10 skulls of male and female and their corresponding
faces from the database.
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Fig. 18 Visual thermodynamic diagram of the skull and face similarity
results for males

We calculate the skull similarity and face similarity both
for males and females, by comparing the male No. 001-2354
model with the other male models, respectively, and then
repeating the same procedures for the female No.002-1642
model with other female models. In Fig. 16, we show the
five males which are the most similar to No. 001-2354 male,
including the faces and skulls. In Fig. 17, we show the five
females which are the most similar to female No.002-1642,
including the faces and skulls. We see that the results shown
in Figs. 16 and 17 are consistent with the results we dis-
cussed above for face similarity between males and females.
This consistency of results indicates the effectiveness of our
proposed method.

4.5 Craniofacial relationship

Figures 18 and 19 show line graphs of the similarity change
trends for both males and female skulls and faces based on
HWKS (male No.001-2354 to other male models; female
No.002-1642 to other female models).

From Fig. 18, when the similarity between the No.001-
2354 skull and other male skulls decreases, the similarity
between theNo.001-2354 face andother faces also decreases.
Male’s skull similarity and face similarity trends are exactly
the same.

From Fig. 19, the skulls similarity and the faces similarity
of females showbasically consistent trends,when the similar-
ity between the female No.002-1642 skull and other female
skulls decreases, the similarity between the female No.002-
1642 face and other female faces also always decreases.
Importantly, we discover that the divergence of a male’s
skull and face similarity trend is closer than that of a female.
Because a male’s facial features are more prominent, and

Fig. 19 Visual thermodynamic diagram of the skull and face similarity
results for females

Fig. 20 Visual thermodynamic diagram of the skull and face similarity
results for males

male skull shape can better determine male face shape. The
results indicates the effectiveness of our proposed method.

The above experimental results show that skull similar-
ity and face similarity exhibit similar trends. To discuss the
validity and rationality of the fact that 3D skull similarity
can be presented by its corresponding or reconstructed face
similarity, we provide the matrix diagrams of the similarity
differences between skulls and faces of males and females,
which are shown as Figs. 20 and 21. From Figs. 20 and 21,
we can see that the difference between the skull similarity
value and the face similarity value is smaller for both males
and females, on the whole, indicating the effectiveness of
using the corresponding face similarity result to present the
skull similarity.
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Fig. 21 Visual thermodynamic diagram of the skull and face similarity
results for females

5 Conclusion

In this article, we define an efficient shape descriptor,
HWKS involving the LBO. The defined HWKS is conve-
nient for extracting and representing 3D skull and facial
features. Based on the HWKS, we provide a 3D skull
similarity and face similarity measurement pipeline, the
effectiveness and accuracy of which has been corrobo-
rated by both linear interpolation similarity experiments and
real data experiments. Furthermore, since our pipeline is
applicable for similarity measurement of 3D skulls with-
out the need of filling holes and is robust for 3D facial
expression transformation, users will encounter no difficulty
in generalizing our framework for use according to their
differentiated needs. Under our proposed unified measure-
ment framework, we simply probed craniofacial relationship
to show the effectiveness of 3D skull similarity can be
presented by its corresponding or reconstructed face simi-
larity.
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